Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 338–345 | Cite as

Electrosynthesis of ZnO nanomaterials in aqueous medium with CTAB cationic stabilizer

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 127 Downloads

Abstract

ZnO nanoparticles were prepared with a green, cheap, and easy aqueous electrochemical process. The electrolyte was made of a stabilizing cationic surfactant (cetyltrimethylammonium bromide, CTAB) dissolved in NaHCO3 at pH = 8. The electrosynthesis was carried out galvanostatically at 10 mA/cm2, at room temperature or at 80 °C for 1 h. Gel-like pristine colloids, made of mixed Zn carbonates and hydroxides, underwent post-synthesis thermal treatments to allow a compete conversion to ZnO. Calcination was carried out at 300 or 600 °C for 1 h. All nanomaterials were characterized at each step of their production by transmission electron microscopy, UV–Vis, infrared (FT–IR) and X-ray photoelectron spectroscopies. Electrochemical synthesis at 80 °C followed by calcination at 300 °C for 1 h allowed preparing ZnO submicron structures with good morphology and stoichiometry.

Graphical Abstract

Open image in new window

Keywords

Zinc oxide nanostructures Electrochemical synthesis Aqueous medium Cationic stabilizer 

Notes

Acknowledgements

Financial support from Italian Ministry of University and Research (MIUR) for Grant number PON03PE_00004_1 (PON MAIND) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2016_4268_MOESM1_ESM.docx (53 kb)
Supplementary Information

References

  1. 1.
    Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164. doi: 10.1007/s10971-005-6621-2 CrossRefGoogle Scholar
  2. 2.
    Oskam G, Poot FdeJP (2006) Synthesis of ZnO and TiO2 nanoparticles. J Sol-Gel Sci Technol 37:157–160. doi: 10.1007/s10971-005-6620-3 CrossRefGoogle Scholar
  3. 3.
    Picca RA, Sportelli MC, Hötger D, Manoli K, Kranz C, Mizaikoff B, Torsi L, Cioffi N (2015) Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers. Electrochim Acta 178:45–54. doi: 10.1016/j.electacta.2015.07.122 CrossRefGoogle Scholar
  4. 4.
    Beek WJE, Wienk MM, Janssen RAJ (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mat 16:1009–1013. doi: 10.1002/adma.200306659 CrossRefGoogle Scholar
  5. 5.
    Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Op Drug Del 7:1063–1077. doi: 10.1517/17425247.2010.502560 CrossRefGoogle Scholar
  6. 6.
    Elilarassi R, Chandrasekaran G (2010) Synthesis and optical properties of Ni-doped zinc oxide nanoparticles for optoelectronic applications. Optoelectron Lett 6:6–10. doi: 10.1007/s11801-010-9236-y CrossRefGoogle Scholar
  7. 7.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:41301–103. doi: 10.1063/1.1992666 CrossRefGoogle Scholar
  8. 8.
    Sportelli MC, Nitti MA, Valentini M, Picca RA, Bonerba E, Sabbatini L, Tantillo G, Cioffi N, Valentini A (2014) Ion beam sputtering deposition and characterization of ZnO-fluoropolymer nano-antimicrobials. Sci Adv Mat 6:1019–1025. doi: 10.1166/sam.2014.1852 CrossRefGoogle Scholar
  9. 9.
    Liu Z, Liu C, Ya J, Lei E (2011) Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renewable En 36:1177–1181. doi: 10.1016/j.renene.2010.09.019 CrossRefGoogle Scholar
  10. 10.
    Sportelli MC, Scarabino S, Picca RA, Cioffi N (2015) Recent trends in the electrochemical synthesis of zinc oxide nano-colloids. In: CRC Concise Encyclopedia of Nanotechnology. 1158–1172Google Scholar
  11. 11.
    Ristić M, Musić S, Ivanda M, Popović S (2005) Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloys Compounds 397:L1–L4. doi: 10.1016/j.jallcom.2005.01.045 CrossRefGoogle Scholar
  12. 12.
    Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572. doi: 10.1021/jp980730h CrossRefGoogle Scholar
  13. 13.
    Vafaee M, Ghamsari MS (2007) Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater Lett 61:3265–3268. doi: 10.1016/j.matlet.2006.11.089 CrossRefGoogle Scholar
  14. 14.
    Roy K, Alam MN, Mandal SK, Debnath SC (2014) Sol–gel derived nano zinc oxide for the reduction of zinc oxide level in natural rubber compounds. J Sol-Gel Sci Technol 70:378–384. doi: 10.1007/s10971-014-3293-9 CrossRefGoogle Scholar
  15. 15.
    Zhang YL, Yang Y, Zhao JH, Tan RQ, Cui P, Song WJ (2009) Preparation of ZnO nanoparticles by a surfactant-assisted complex sol–gel method using zinc nitrate. J Sol-Gel Sci Technol 51:198–203. doi: 10.1007/s10971-009-1959-5 CrossRefGoogle Scholar
  16. 16.
    Chandrappa K, Venkatesha T, Vathsala K, Shivakumara C (2010) A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles. J Nanopart Res 12:2667–2678. doi: 10.1007/s11051-009-9846-0 CrossRefGoogle Scholar
  17. 17.
    Chandrappa KG, Venkatesha TG (2012) Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles. Nano Micro Lett 4:14–24. doi: 10.3786/nml.v4i1.p14-24 CrossRefGoogle Scholar
  18. 18.
    Sportelli MC, Hötger D, Picca RA, Manoli K, Kranz C, Mizaikoff B, Torsi L, Cioffi N (2014) Electrosynthesized polystyrene sulphonate-capped zinc oxide nanoparticles as electrode modifiers for sensing devices. Symposium K/RR – Synthesis, Characterization and Applications of Functional Materials—Thin Films and Nanostructures.  10.1557/opl.2014.847
  19. 19.
    Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Tech Adv Mater 10:13001CrossRefGoogle Scholar
  20. 20.
    Li F, Hu L, Li Z, Huang X (2008) Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. J Alloys Compd 465:L14–L19. doi: 10.1016/j.jallcom.2007.11.009 CrossRefGoogle Scholar
  21. 21.
    Wen B, Huang Y, Boland JJ (2008) Controllable growth of zno nanostructures by a simple solvothermal process. J Phys Chem C 112:106–111. doi: 10.1021/jp076789i CrossRefGoogle Scholar
  22. 22.
    Xie J, Li P, Wang Y, Wei Y (2008) Synthesis of ZnO whiskers with different aspect ratios by a facile solution route. Phys Status Solidi B 205:1560–1565. doi: 10.1002/pssa.200824115 CrossRefGoogle Scholar
  23. 23.
    Kaesche H (1964) The passivity of zinc in aqueous solutions of sodium carbonate and sodium bicarbonate. Electrochim Acta 9:383–394. doi: 10.1016/0013-4686(64)80044-X CrossRefGoogle Scholar
  24. 24.
    Kannangara DCW, Conway BE (1987) Zinc oxidation and redeposition processes in aqueous alkali and carbonate solutions: I . pH and carbonate ion effects in film formation and dissolution. J Electrochem Soc 134:894–906. doi: 10.1149/1.2100593 CrossRefGoogle Scholar
  25. 25.
    Conway BE, Kannangara DCW (1987) Zinc oxidation and redeposition processes in aqueous alkali and carbonate solutions: II. distinction between dissolution and oxide film formation processes. J Electrochem Soc 134:906–918. doi: 10.1149/1.2100594 CrossRefGoogle Scholar
  26. 26.
    Musić S, Popović S, Maljković M, Dragčević Đ (2002) Influence of synthesis procedure on the formation and properties of zinc oxide. J Alloys Compd 347:324–332. doi: 10.1016/S0925-8388(02)00792-2 CrossRefGoogle Scholar
  27. 27.
    Katwal G, Paulose M, Rusakova IA, Martinez JE, Varghese OK (2016) Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett 16:3014–3021. doi: 10.1021/acs.nanolett.5b05280 CrossRefGoogle Scholar
  28. 28.
    Steinberger R, Duchoslav J, Arndt M, Stifter D (2014) X-ray photoelectron spectroscopy of the effects of Ar+ ion sputtering on the nature of some standard compounds of Zn, Cr, and Fe. Corros Sci 82:154–164. doi: 10.1016/j.corsci.2014.01.018 CrossRefGoogle Scholar
  29. 29.
    Steinberger R, Walter J, Greunz T, Duchoslav J, Arndt M, Molodtsov S, Meyer DC, Stifter D (2015) XPS study of the effects of long-term Ar+ ion and Ar cluster sputtering on the chemical degradation of hydrozincite and iron oxide. Corros Sci 99:66–75. doi: 10.1016/j.corsci.2015.06.019 CrossRefGoogle Scholar
  30. 30.
    Ahmad R, Boubekeur-Lecaque L, Nguyen M, Lau-Truong S, Lamouri A, Decorse P, Galtayries A, Pinson J, Felidj N, Mangeney C (2014) Tailoring the surface chemistry of gold nanorods through Au–C/Ag–C covalent bonds using aryl diazonium salts. J Phys Chem C 118:19098–19105. doi: 10.1021/jp504040d CrossRefGoogle Scholar
  31. 31.
    NIST XPS Database (2012). In: NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. http://srdata.nist.gov/xps
  32. 32.
    Wagner CD, Joshi A (1988) The auger parameter, its utility and advantages: a review. J Electron Spectrosc Relat Phenom 47:283–313. doi: 10.1016/0368-2048(88)85018-7 CrossRefGoogle Scholar
  33. 33.
    Bera S, Dhara S, Velmurugan S, Tyagi AK (2012) Analysis on binding energy and auger parameter for estimating size and stoichiometry of ZnO nanorods. Int J Spectrosc 2012:1–4. doi: 10.1155/2012/371092 Google Scholar
  34. 34.
    Dake LS, Baer DR, Zachara JM (1989) Auger parameter measurements of zinc compounds relevant to zinc transport in the environment. Surf Interface Anal 14:71–75. doi: 10.1002/sia.740140115 CrossRefGoogle Scholar
  35. 35.
    Dierstein A, Natter H, Meyer F, Stephan H-O, Kropf C, Hempelmann R (2001) Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scripta Mater 44:2209–2212. doi: 10.1016/S1359-6462(01)00906-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly

Personalised recommendations