Skip to main content

Advertisement

Log in

Formation of local thorium silicate compound by electrochemical deposition from an acetone solution of thorium nitrate

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The results of the study of local formation (diameter of deposited area is about 100 μm) of thorium oxide coatings on SiO2/Si(001) surface by electrochemical deposition are presented. It was found that the electrochemical deposition of thorium atoms from an acetone solution of Th(NO3)4 on silicon surface lead to the formation of thorium-based films. The results of surface analysis by local X-ray photoelectron spectroscopy and X-ray photoemission indicate that these films contain of thorium-, silicon-, oxygen- and carbon-based compounds. After 30 h of annealing at 1350 °C in atmosphere carbon pulled completely, and the compound transforms into thorium silicate films ThSiO4 (Huttonite). Our primary study of ThSiO4 compound by reflection electron energy loss spectroscopy showed that this system have energy gap ~7.7 eV and can be useful for further research of «nuclear clocks» as well as for «nuclear battery».

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duggirala R, Lal A, Radhakrishnan S (2010) Radioisotope thin-film powered microsystems. Springer, New York, NY

    Book  Google Scholar 

  2. Tkalya EV (2011) Phys Rev Lett 106:162501

    Article  Google Scholar 

  3. Beck BR, Wu CY, Beiersdorfer P, Brown GV, Becker JA, Moody KJ, Wilhelmy JB, Porter FS, Kilbourne CA, Kelley RL (2009) Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh. Report LLNL-PROC-415170

  4. Tkalya EV (2011) Phys Rev Lett 106:162501

    Article  Google Scholar 

  5. Peik Ek, Okhapkin M (2015) Comptes Rendus Physique 16:5

    Google Scholar 

  6. Wense L, Seiferle B, Laatiaoui M, Neumayr JB, Maier H-J, Wirth H-F, Mokry C, Runke J, Eberhardt K, Düllmann CE, Trautmann NG, Thirolf PG (2016) Nature 533:47

    Article  Google Scholar 

  7. Jeet J, Schneider Ch, Sullivan ST, Rellergert WD, Mirzadeh S, Cassanho A, Jenssen HP, Tkalya EV, Hudson ER (2015) Phys Rev Lett 114:253001

    Article  Google Scholar 

  8. Campbell CJ, Radnaev AG, Kuzmich A (2011) Phys Rev Lett 106:223001

    Article  Google Scholar 

  9. Troyan VI, Borisyuk PV, Lebedinskii YuYu, Vasiliev OS (2015) Phys Procedia 72:175–178

    Article  Google Scholar 

  10. Shein IR, Shein KI, Medvedeva NI, Ivanovskii AL (2006) Phys Status Solidi B 243:44

    Article  Google Scholar 

  11. Borisyuk PV, Krasavin AV, Tkalya EV, Lebedinskii Yu Yu, Vasiliev OS, Yakovlev VP, Kozlova TI, Fetisov VV (2016) Chem Phys 478:2–7. doi:10.1016/j.chemphys.2016.07.010

  12. Parker W, Bildstain H, Getoff N (1964) Nucl Instrum Method 26:55–60

    Article  Google Scholar 

  13. Mazeina Lena, Ushakov Sergey V, Navrotsky Alexandra, Boatner Lynn A (2005) Geochim Cosmochim Acta 69:4675–4683

    Article  Google Scholar 

  14. Briggs D, Grant JT (2003) Surface analysis by auger and X-ray photoelectron spectroscopy. IM Publications, Chichester

    Google Scholar 

  15. Borisyuk PV, Vasilyev OS, Krasavin AV, Lebedinskii Yu Yu, Troyan VI, Tkalya EV (2015) Phys Status Solidi C 12:1333–1337

    Article  Google Scholar 

  16. Moulder JF, Stickle WF, Sobol PE, Bomben K (1992) Handbook of X-ray photoelectron spectroscopy. In: Chastain J (ed) Physical electronics, 2nd edn. Perkin-Elmer, Eden Prairie, Minnesota

  17. Teterin YA, Utkin IO, Melnikov IV, Lebedev AM, Teterin AY, Ivanov KE, Nikitin AS, Vukchevich L (2000) J Struct Chem 41:965

    Article  Google Scholar 

  18. Zenkevich A, Lebedinskii Yu, Spiga S, Wiemer C, Scarel G, Fanciulli M (2007) Microelectron Eng 84:2263–2266

    Article  Google Scholar 

  19. Harris LA (1959) J Am Ceram Soc 42:74–77

    Article  Google Scholar 

  20. Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP (1980) Phys Rev Lett 44:1620

    Article  Google Scholar 

  21. Borisyuk PV, Vasil’ev OS, Krasavin AV, Lebedinskii Yu Yu, Troyan VI (2014) Colloid J 76:645

    Article  Google Scholar 

  22. Borisyuk PV, Vasilyev ОS, Krasavin АV, Lebedinskii Yu Yu, Troyan VI (2015) J Sol-Gel Sci Technol 73:580–585

    Article  Google Scholar 

  23. Tkalya EV, Akhrameev EV, Arutyunayn RV, Bol’shov LA, Kondratenko PS (2012) Phys Rev C 85:044612

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to V.G. Efimov and M.M. Grehov for help in experimental processing. The work was supported by the Russian Science Foundation (Project No. 16-19-00168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Borisyuk.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisyuk, P.V., Vasilyev, О.S., Krasavin, А.V. et al. Formation of local thorium silicate compound by electrochemical deposition from an acetone solution of thorium nitrate. J Sol-Gel Sci Technol 81, 313–320 (2017). https://doi.org/10.1007/s10971-016-4267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4267-x

Keywords

Navigation