Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 327–332 | Cite as

Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects

  • Anna S. Goncharova
  • Stepan V. Sotnichuk
  • Anna S. Semisalova
  • Tatiana Yu. Kiseleva
  • Ilya Sergueev
  • Marcus Herlitschke
  • Kirill S. Napolskii
  • Andrei A. Eliseev
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Iron nanowires with the diameter of ca. 40 nm and a length up to few dozens of microns are fabricated via templated electrodeposition using anodic aluminum oxide (AAO) film as porous matrix. Despite polycrystalline structure of wires the technique allows fabrication of dense deposits with micrometer-sized single crystalline grains within AAO templates and high chemical stability towards oxidation. Nanowire arrays exhibit strong magnetization anisotropy with saturation magnetization of 180 emu/g and coercive field of 815 Oe in direction parallel to the long axis of nanowires and 230 Oe in perpendicular direction. The effective hyperfine fields on iron atoms as extracted from Mossbauer and Nuclear Forward Scattering of sample in demagnetized state indicates slight deviation of magnetization vector (~ 6°) from nanowire long axis appearing probably due to curling of magnetic moments by antisymmetric exchange interactions at the surface of nanowires.

Graphical Abstract

Open image in new window


Iron nanowires Templated electrodeposition Curling Mossbauer spectroscopy Nuclear Forward Scattering Antisymmetric exchange 



This work is supported by the Russian Science Foundation (Grant No. 14-13-00809). Part of experiments was carried out using the scientific equipment purchased by M.V. Lomonosov Moscow State University Program of Development. The PETRA III light source is acknowledged for provision of synchrotron radiation beam time at the beamline P01.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Prog Solid State Ch 31(1):5–147CrossRefGoogle Scholar
  2. 2.
    Ramazani A, Kashi MA, Isfahani VB, Ghaffari M (2010) The influence of crystallinity enhancement on the magnetic properties of ac electrodeposited Fe nanowires. J Appl Phys A 98:691–697CrossRefGoogle Scholar
  3. 3.
    Paulus PM, Luis F, Kroll M, Schmid G, de Jongh LJ (2001) Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J Magn Magn Mater 224:180–196CrossRefGoogle Scholar
  4. 4.
    Sun L, Hao Y, Chien C-L, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res & Dev 49:79–102CrossRefGoogle Scholar
  5. 5.
    Cui С, Yang W, Sun J, Zhang Q (2011) Electrodepositing fabrication and microstructures of the Fe nanowires with a preferred orientation. Superlatt Microstruct 50:628–633CrossRefGoogle Scholar
  6. 6.
    Eliseev AA, Vyacheslavov AS, Lukashin AV, Tretyakov YD, Suzdalev IP, Maximov YV, Goernert P (2006) Iron-containing nanocomposites based on ZSM-5 zeolite. Int J Nanosci 5(04n05):459–463CrossRefGoogle Scholar
  7. 7.
    Cornejo DR, Padron-Hernandez E (2007) Study of magnetization process in ordered Fe nanowire arrays. J Magn Magn Mater 316:e48–e51CrossRefGoogle Scholar
  8. 8.
    Zhan Q, He W, Ma X, Liang Y, Kou Z, Di N, Cheng Z (2004) Applied field Mössbauer study of shape anisotropy in Fe nanowire arrays. Appl Phys Lett 85:4690–4692CrossRefGoogle Scholar
  9. 9.
    Peng Y, Zhang HL, Pan SL, Li HL (2000) Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film. J Appl Phys 87:7405–7408CrossRefGoogle Scholar
  10. 10.
    Zhan Q, Chen Z, Xue D, Li F, Kunkel H, Zhou X, Roshko R, Williams G (2002) Structure and magnetic properties of Fe-Co nanowires in self-assembled arrays. Phys Rev B 66:134436-1–134436-6CrossRefGoogle Scholar
  11. 11.
    Napolskii KS, Roslyakov IV, Romanchuk AY, Kapitanova OO, Mankevich AS, Lebedev VA, Eliseev AA (2012) Origin of long-range orientational pore ordering in anodic films on aluminium. J Mater Chem 22:11922–11926CrossRefGoogle Scholar
  12. 12.
    Petukhov DI, Napolskii KS, Berekchiyan MV, Lebedev AG, Eliseev AA (2013) Comparative study of structure and permeability of porous oxide films on aluminum obtained by single-and two-step anodization. ACS Appl Mater Interfaces 5:7819–7824CrossRefGoogle Scholar
  13. 13.
    Herlitschke M, Disch S, Sergueev I, Schlage K, Wetterskog E, Bergstrom L, Hermann RP (2016) Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering. J Phys 711:012002Google Scholar
  14. 14.
    Grujicic D, Pesic B (2005) Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim Acta 50:4405–4418CrossRefGoogle Scholar
  15. 15.
    Izaki M (2010) Electrodeposition of iron and iron alloys. In: Schlesinger M, Paunovic M (eds) Modern electroplating, 5th edn. John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in CanadaGoogle Scholar
  16. 16.
    Lide DR (2003) CRC handbook of Chemistry and Physics, Taylor & Francis Group, Boca Raton, FL, USAGoogle Scholar
  17. 17.
    Napolskii KS, Roslyakov IV, Eliseev AA, Petukhov DI, Lukashin AV, Chen S-F, Liu C-P, Tsirlina GA (2011) Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim Acta 56:2378–2384CrossRefGoogle Scholar
  18. 18.
    Petukhov DI, Berekchiian MV, Pyatkov ES, Solntsev KA, Eliseev AA (2016) Experimental and theoretical study of enhanced vapour transport through nanochannels of anodic alumina membranes in capillary condensation regime. J Phys Chem C 120(20):10982–10990CrossRefGoogle Scholar
  19. 19.
    Napolskii KS, Eliseev AA, Yesin NV, Lukashin AV, Tretyakov YD (2007) Ordered arrays of Ni magnetic nanowires: synthesis and investigation. Physica E 37:178–183CrossRefGoogle Scholar
  20. 20.
    Preston RS, Hanna SS, Heberle J (1963) Mossbauer effect in metallic iron. Phys Rev 130:2207–2218CrossRefGoogle Scholar
  21. 21.
    Rohlsberger R (2005) Nuclear condensed matter physics with synchrotron radiation. Basic principles, methodology and applications. Book. Springer Tracts in Modern Physics. Vol. 208, Springer-Verlag Berlin HeidelbergGoogle Scholar
  22. 22.
    Shvyd’ko YV (2000) MOTIF: evaluation of time spectra for nuclear forward scattering. Hyperfine Interact 125(1):173–188CrossRefGoogle Scholar
  23. 23.
    Grigoriev SV, Grigoryeva NA, Napol’skii KS, Chumakov AP, Eliseev AA, Roslyakov IV, Eckerlebe H, Syromyatnikov AV (2011) Arrays of interacting ferromagnetic nanofilaments: small-angle neutron diffraction study. JETP Lett 94(8):635–641CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna S. Goncharova
    • 1
  • Stepan V. Sotnichuk
    • 1
  • Anna S. Semisalova
    • 2
  • Tatiana Yu. Kiseleva
    • 2
  • Ilya Sergueev
    • 3
  • Marcus Herlitschke
    • 3
  • Kirill S. Napolskii
    • 1
    • 4
  • Andrei A. Eliseev
    • 1
    • 4
  1. 1.Department of Materials ScienceM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Deutsches Elektronen-SynchrotronHamburgGermany
  4. 4.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations