Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 372–377 | Cite as

Comparative analysis of NdCaCoO4 phase formation from cryogel and from solid state precursors

  • Sergey A. Malyshev
  • Oleg A. Shlyakhtin
  • Galina N. Mazo
  • Alexey V. Garshev
  • Andrey V. Mironov
  • Alexey S. Loktev
  • Alexey G. Dedov
Brief Communication: Sol-gel, hybrids and solution chemistries

Abstract

In order to identify the reasons of the complicated synthesis of NdCaCoO4 by the cryogel method, the phase formation processes during thermal processing of precursors were investigated by in-situ X-ray diffraction analysis, Rietveld refinement and energy dispersive X-ray analysis of reaction products and intermediates. Formation of NdCaCoO4 from the cryogel precursor and from the mixture of oxides and CaCO3 is observed at 1000–1100 °C. The complicated phase formation from the cryogel precursor is associated with the low reactivity of (Nd,Ca)CoO3 intermediate of the precursor thermolysis. Precipitation by NaOH/Na2CO3 instead of KOH/K2CO3 results in the reduction of NdCaCoO4 formation temperature to 800 °C. According to energy dispersive X-ray analysis, the coprecipitation of Nd, Ca and Co is accompanied by the capture of Na ions followed by the formation of NaxCoO2 phase at 600–700 °C. The enhanced reactivity of (Nd,Ca)CoO3 in this case could be attributed to the enhanced ion mobility due to the simultaneous formation of NaxCoO2, CoO and NdCaCoO4 (Hedvall effect).

Graphical Abstract

Open image in new window

Keywords

Cryogel Thermal decomposition Phase formation Rare earth cobaltites XRD in situ Hedvall effect 

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant No 13-03-12406) and by the Russian Science Foundation (project 14-13-01007). The M.V. Lomonosov Moscow State University Program of Development is gratefully acknowledged for the partial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2016_4224_MOESM1_ESM.cif (18 kb)
Supplementary Information
10971_2016_4224_MOESM2_ESM.cif (13 kb)
Supplementary Information
10971_2016_4224_MOESM3_ESM.cif (13 kb)
Supplementary Information
10971_2016_4224_MOESM4_ESM.tiff (2.2 mb)
Supplementary Information
10971_2016_4224_MOESM5_ESM.tiff (2.2 mb)
Supplementary Information
10971_2016_4224_MOESM6_ESM.txt (18 kb)
Supplementary Information
10971_2016_4224_MOESM7_ESM.txt (13 kb)
Supplementary Information
10971_2016_4224_MOESM8_ESM.txt (13 kb)
Supplementary Information
10971_2016_4224_MOESM9_ESM.txt (789 kb)
Supplementary Information
10971_2016_4224_MOESM10_ESM.txt (3 kb)
Supplementary Information
10971_2016_4224_MOESM11_ESM.txt (2 kb)
Supplementary Information
10971_2016_4224_MOESM12_ESM.txt (6 kb)
Supplementary Information
10971_2016_4224_MOESM13_ESM.txt (1 kb)
Supplementary Information
10971_2016_4224_MOESM14_ESM.txt (0 kb)
Supplementary Information

References

  1. 1.
    Dedov AG, Komissarenko DA, Loktev AS, Mazo GN, Moiseev II (2010) Method of producing synthesis gas. Patent RU2433950С1. https://patents.google.com/patent/RU2433950C1/en. Filing date 21-04-2010.
  2. 2.
    Dedov AG, Loktev AS, Komissarenko DA, Mazo GN, Shlyakhtin OA, Parkhomenko KV, Kiennemann AA, Roger AC, Ishmurzin AV, Moiseev II (2015) Partial oxidation of methane to produce syngas over a neodymium–calcium cobaltate-based catalyst. Appl Catal A Gen 489:140–146CrossRefGoogle Scholar
  3. 3.
    Taguchi H, Kido H, Tabata K (2004) Relationship between crystal structure and electricalproperty of K2NiF4-type (Ca1-xNd1+x)CoO4-δ. Physica B 344:271–277CrossRefGoogle Scholar
  4. 4.
    Borovskikh LV, Putilin SN, Leonova LS, Mazo GN (2008) Synthesis, structure and transport properties of NdCaCoO4. Inorg Mater Appl Res 5:54–59Google Scholar
  5. 5.
    Mazo GN, Kolchina LM, Lyskov NV, Leonova LS et al. (2013) Features of high temperature behavior in NdCaCoO4 — the catalyst of the partial oxidation of methane to syngas. Rus. J Phys Chem 87:1976–1982Google Scholar
  6. 6.
    James M, Tedesco A, Cassidy D, Colella M, Smythe PJ (2006) The phase diagram and crystal chemistry of strontium-doped rare earth cobaltates: Ln2-xSrxCoO4+δ (Ln = La-Dy). J Alloys Compd 419:201–207CrossRefGoogle Scholar
  7. 7.
    Shlyakhtin OA, Mazo GN, Kaluzhskikh MS, Komissarenko DA, Loktev AS, Dedov AG (2012) Compositional boundaries of Nd2-x CaxCoO4±δ at 900–1200°C. Mater Lett 75:20–22CrossRefGoogle Scholar
  8. 8.
    Thorogood GJ, Orain PY, Ouvry M, Piriou B, Tedesco T, Wallwork KS, Herrmann J, James M (2011) Structure, crystal chemistry and magnetism of rare earth calcium-doped cobaltates: Ln2-xCaxCoO4+δ (Ln . Pr, Nd, Sm, Eu and Gd). Solid State Sci 13:2113–2123CrossRefGoogle Scholar
  9. 9.
    Shlyakhtin OA, Mazo GN, Malyshev SA, Kolchina LM, Knot’ko AV, Loktev AS, Dedov AG (2013) Cryogel synthesis and solid state reactivity of NdCaCoO4. Mater Res Bull 48:245–249CrossRefGoogle Scholar
  10. 10.
    Wong-Ng W, Laws W, Talley KR, Huang Q, Yan Y, Martin J, Kaduk JA (2014) Phase equilibria and crystal chemistry of the CaO–1/2Nd2O3–CoOz system at 885 C in air. J Solid State Chem 215:128–134CrossRefGoogle Scholar
  11. 11.
    Berar JF, Lelann P (1991) ESDs and estimated probable-error obtained in Rietveld refinements with local correlations. J Appl Cryst. 24:1–5CrossRefGoogle Scholar
  12. 12.
    Kundu AK, Sampathkumaran EV, Gopalakrishnan KV, Rao CNR (2004) Inhomogeneous magnetic behavior of Pr0.7Ca0.3CoO3 and Nd0.7 Ca0.3CoO3. J Magn Magn Mater 281:261–266CrossRefGoogle Scholar
  13. 13.
    Zhang L, Tang X, Gao W (2009) Formation and growth mechanism of highly tiled γ-NaxCo2O4 crystals by a novel sodium alginate gel template method. J Phys Chem C 113:7930–7934CrossRefGoogle Scholar
  14. 14.
    Huang Q, Khaykovich B, Chou FC, Cho JH, Lynn JW, Lee YS (2004) Structural transition in NaxCoO2 with x near 0.75 due to Na rearrangement. Phys Rev B: Condens Matter 70(134115):1–6Google Scholar
  15. 15.
    Gallagher PK, Johnson DW (1982) Solid-State Reactivity in the System Na2CO3-CaCO3. J Phys Chem 86:295–297CrossRefGoogle Scholar
  16. 16.
    Vecera J, Dohnalova Z, Mikulasek P, Sulcova P (2013) Anatase–rutile transformation at the synthesis of rutile pigments (Ti,Cr,Nb)O2 and their color properties. J Therm Anal Calorim 113:61–67CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sergey A. Malyshev
    • 1
  • Oleg A. Shlyakhtin
    • 1
  • Galina N. Mazo
    • 1
  • Alexey V. Garshev
    • 2
  • Andrey V. Mironov
    • 1
  • Alexey S. Loktev
    • 3
  • Alexey G. Dedov
    • 3
  1. 1.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Materials Sciences, M.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia

Personalised recommendations