Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 514–522 | Cite as

A pure aqueous route to mesoporous silica thin films via dip-coating of prefabricated hybrid micelles

  • Heiko Zschiedrich
  • Cédric Boissière
  • Patricia J. Kooyman
  • Eric Prouzet
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 260 Downloads

Abstract

Mesoporous thin films were prepared by dip-coating with a purely aqueous method, as a substitute for the alcohol-based evaporation-induced self-assembly route. Unlike other aqueous routes that require a very slow pulling rate possible only using high performance dip-coaters, as a result of the high surface tension of water, this new process works with standard dip-coaters and at similar pulling rates as are used for the evaporation-induced self-assembly route. This unique asset is the result of the synthesis of prefabricated self-assembled silicate/organic hybrid micelles. These building blocks are concentrated before use, which provides a gelling edge after moderate evaporation. As a result, defect-free continuous mesoporous films with well-organized hexagonally packed pores were prepared after optimization of both the evaporation rate of the solution of hybrid micelles and the dip-coater pulling rate.

Graphic Abstract

The transmission electron microscopy observation reveals the hexagonally packed structure of mesoporous silica film. This nanostructure has already been observed on films prepared with the evaporation-induced self-assembly process, but it is the first time it is obtained with a pure aqueous method, based on prefabricated hybrid micelles, not on controlled evaporation of mesophases. Open image in new window

Keywords

Thin film Evaporation-induced self-assembly Mesoporous Ellipsoporosimetry Dip-coating Silica 

Notes

Acknowledgments

EP thanks NSERC (Discovery Grant 342859-2011) for funding support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2016_4221_MOESM1_ESM.pdf (4.8 mb)
Supplementary Information

References

  1. 1.
    Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zinks JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 389:364–368CrossRefGoogle Scholar
  2. 2.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  3. 3.
    Sellinger A, Weiss PM, Nguyen A, Lu YF, Assink RA, Gong W, Brinker CJ (1998) Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394(6690):256–260CrossRefGoogle Scholar
  4. 4.
    Qin M, Zhao W, Chu J, Qu J, Wang L, Li S, Zhang H, Zhao H, Yu Z, Xue T, Li J, Guo Q, Qi T (2013) Synthesis and characterization of mesoporous TiO2 prepared via three different procedures in ethanol medium. Mater Res Bull 48(3):1076–1081. doi: 10.1016/j.materresbull.2012.11.108 CrossRefGoogle Scholar
  5. 5.
    Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410:913–917CrossRefGoogle Scholar
  6. 6.
    Molenkamp WC, Watanabe M, Miyata H, Tolbert SH (2004) Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica. J Am Chem Soc 126(14):4476–4477. doi: 10.1021/ja039296 CrossRefGoogle Scholar
  7. 7.
    Wu KCW, Jiang XF, Yamauchi Y (2011) New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications. J Mater Chem 21(25):8934–8939. doi: 10.1039/c1jm10548e CrossRefGoogle Scholar
  8. 8.
    Yamauchi Y (2013) Field-induced alignment controls of one-dimensional mesochannels in mesoporous materials. J Ceram Soc Japan 121(1417):831–840. doi: 10.2109/jcersj2.121.831 CrossRefGoogle Scholar
  9. 9.
    Grosso D, Cagnol F, Soler-Illia GJdAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14(4):309–322CrossRefGoogle Scholar
  10. 10.
    Faustini M, Louis B, Albouy PA, Kuemmel M, Grosso D (2010) Preparation of sol-gel films by dip-coating in extreme conditions. J Phys Chem C 114(17):7637–7645. doi: 10.1021/jp9114755 CrossRefGoogle Scholar
  11. 11.
    De Paz H, Chemtob A, Croutxe-Barghorn C, Rigolet S, Lebeau B (2012) A solvent-free photochemical route for the preparation of mesoporous inorganic films. Micropor Mesopor Mat 151:88–92. doi: 10.1016/j.micromeso.2011.10.045 CrossRefGoogle Scholar
  12. 12.
    De Paz-Simon H, Chemtob A, Crest F, Croutxe-Barghorn C, Michelin L, Vidal L, Rigolet S, Lebeau B (2012) Thick mesostructured films via light induced self-assembly. RSC Adv 2(31):11944–11952. doi: 10.1039/c2ra21676k CrossRefGoogle Scholar
  13. 13.
    Boissière C, Larbot A, van der Lee A, Kooyman PJ, Prouzet E (2000) A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chem Mater 12:2902–2913CrossRefGoogle Scholar
  14. 14.
    Galarneau A, Di Renzo F, Fajula F, Mollo L, Fubini B, Ottaviani MF (1998) Kinetics of formation of micelle-templated silica mesophases. Monitored by electron paramagnetic resonance. J Coll Interface Sci 201:105-117Google Scholar
  15. 15.
    Bastakoti BP, Ishihara S, Leo S-Y, Ariga K, Wu KCW, Yamauchi Y (2014) Polymeric micelle assembly for preparation of large-sized mesoporous metal oxides with various compositions. Langmuir 30(2):651–659. doi: 10.1021/la403901x CrossRefGoogle Scholar
  16. 16.
    Li Y, Bastakoti BP, Imura M, Hwang SM, Sun Z, Kim JH, Dou SX, Yamauchi Y (2014) Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chem-Eur J 20(20):6027–6032. doi: 10.1002/chem.201304689 CrossRefGoogle Scholar
  17. 17.
    Bastakoti BP, Salunkhe RR, Ye JY, Yamauchi Y (2014) Direct synthesis of a mesoporous TiO2-RuO2 composite through evaporation-induced polymeric micelle assembly. Phys Chem Chem Phys 16(22):10425–10428. doi: 10.1039/c4cp01118j CrossRefGoogle Scholar
  18. 18.
    de Zarate DO, Bouyer F, Zschiedrich H, Kooyman PJ, Trens P, Iapichella J, Durand R, Guillem C, Prouzet E (2008) Micro-mesoporous monolithic Al-MSU with a widely variable content of aluminum leading to tunable acidity. Chem Mater 20:1410–1420CrossRefGoogle Scholar
  19. 19.
    Mouawia R, Larionova J, Guari Y, Oh S, Cook P, Prouzet E (2009) Synthesis of Co3[Fe(CN)6]2 molecular-based nanomagnets in MSU mesoporous silica by integrative chemistry. New J Chem 33:2449–2456CrossRefGoogle Scholar
  20. 20.
    Boissière C, Larbot A, Bourgaux C, Prouzet E, Bunton CA (2001) A study of the assembly mechanism of the mesoporous MSU-X silica two-step synthesis. Chem Mater 13(10):3580–3586CrossRefGoogle Scholar
  21. 21.
    Boissière C, Grosso D, Lepoutre S, Nicole L, Brunet-Bruneau A, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21:12362–12371CrossRefGoogle Scholar
  22. 22.
    Brinker CJ, Hurd AJ (1994) Fundamentals of sol-gel dip-coating. J Phys III 4(7):1231–1242Google Scholar
  23. 23.
    Prouzet E, Boissière C (2005) A review on the synthesis, structure and applications in separation processes of mesoporous MSU-X silica obtained with the two-step process. CR Chimie 8:579–596CrossRefGoogle Scholar
  24. 24.
    Nicole L, Boissière C, Grosso D, Quach A, Sanchez C (2005) Mesostructured hybrid organic-inorganic thin films. J Mater Chem 15(35–36):3598–3627CrossRefGoogle Scholar
  25. 25.
    Rao SS, Rao KVS, Shareefuddin M, Rao UVS, Chandra S (1994) Ionic conductivity and battery characteristic studies on PEO + AgNO3 polymer electrolyte. Solid State Ionics 67(3–4):331–334Google Scholar
  26. 26.
    Hirankumar G, Selvasekarapandian S, Bhuvaneswari MS, Baskaran R, Vijayakumar M (2006) Ag+ ion transport studies in a polyvinyl alcohol-based polymer electrolyte system. J Solid State Electrochem 10(4):193–197. doi: 10.1007/s10008-004-0612-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut Européen des MembranesMontpellier Cedex 05France
  2. 2.Laboratoire de Chimie de la Matière Condensée, UMR 7574 – CNRS – Université Pierre et Marie CurieParis Cedex 05France
  3. 3.Department of Chemical EngineeringUniversity of Cape TownRondeboschSouth Africa
  4. 4.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations