Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 505–513 | Cite as

Hybrid silicas/waterborne polyurethane composite properties: In situ formation vs. grafting methods

  • Cesar A. Heck
  • João Henrique Z. dos Santos
  • Carlos R. Wolf
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


A series of composites of commercial waterborne polyurethane and hybrid silica were prepared by the sol–gel process through in situ synthesis. Mechanical properties, small angle X-ray scattering and differential scanning calorimetry measurements were performed to evaluate the effects that hybrid silica has on the properties of the resulting polyurethane composites. A series of 13 different organosilanes differing in polarity and alkyl chain length was studied. Under the present evaluated conditions, composites bearing hybrid silica were more likely to exhibit a reduction in mechanical resistance when compared to bare polyurethane. Samples also exhibited a negligible variation in glass transition temperature and a reduction in ΔCp. The enthalpy of the crystallization process exhibited an increase. Based on the small angle X-ray scattering measurements, the composites exhibited a small reduction in the interdomain spacing and an increase in the degree of phase separation.

Graphical Abstract


Adhesives Polyurethane Hybrid silica Nanoparticles SAXS 



Heck thanks CNPq for the grant. The authors thank the LNLS (Project SAXS1-11797) for the measurements on the SAXS beamline (Project SAXS1-11797).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Szycher M (2012) Szycher’s handbook of polyurethanes. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Van Bogart JWC, Gibson PE, Cooper SL (1983) J Polym Sci Polym Phys Ed 21:65–95CrossRefGoogle Scholar
  3. 3.
    Prisacariu C (2011) Polyurethane elastomers from morphology to mechanical aspects. Springer, VienCrossRefGoogle Scholar
  4. 4.
    Koberstein JT, Stein RS (1983) J Polym Sci Polym Phys Ed 21:1439–1472CrossRefGoogle Scholar
  5. 5.
    Leung LM, Koberstein JT (1985) Polym Sci Polym Phys Ed 23:1883–1913CrossRefGoogle Scholar
  6. 6.
    Cakic SM, Ristic IS, Marinovic-Cincovic M, Spırkova M (2013) Int J Adhes Adhes 41:132–139CrossRefGoogle Scholar
  7. 7.
    Vega-Baudrit J, Navarrobanon V, Vazquez P, Martin-martinez J (2006) Int J Adhes Adhes 26:378–387CrossRefGoogle Scholar
  8. 8.
    Torró-Palau AM, Fernández-Garcia JC, Orgilés-Barceló AC, Martı́n-Martı́nez JM (2001) Int J Adhes Adhes 21:1–9CrossRefGoogle Scholar
  9. 9.
    Baudrit J, Sibaja-Ballestero M, Vázquez P, Torregrosa-Maciá R, Martín-Martínez Miguel J (2007) Int J Adhes Adhes 27:469–479CrossRefGoogle Scholar
  10. 10.
    Jang ES, Khan SB, Seo J, Akhtar K, Choi J, Kim KI et al. (2011) Macromol Res 19:1006–1013CrossRefGoogle Scholar
  11. 11.
    Lin WC, Yang CH, Wang TL, Shieh YT, Chen WJ (2012) Express Polym Lett 6:2–13CrossRefGoogle Scholar
  12. 12.
    Lai X, Shen Y, Wang L, Li Z (2011) Polym-Plast Technol Eng 50:740–747CrossRefGoogle Scholar
  13. 13.
    Wang L, Shen Y, Lai X, Li Z (2011) Appl Polym Sci 119:3521–3530CrossRefGoogle Scholar
  14. 14.
    Wu D, Qiu F, Xu H, Zhang J, Yang D (2011) J Appl Polym Sci 119:1683–1695CrossRefGoogle Scholar
  15. 15.
    Wu D, Xu H, Qiu F, Yang D (2011) Polym Plast Technol Eng 50:498–508CrossRefGoogle Scholar
  16. 16.
    Jena KK, Sahoo S, Narayan R, Aminabhavi TM, Raju K (2011) Polym Int 60:1504–1513CrossRefGoogle Scholar
  17. 17.
    Jeon HT, Jang MK, Kim BK, Kim KH (2007) Colloids Surf A 302:559–567CrossRefGoogle Scholar
  18. 18.
    Florian P, Jena KK, Allauddin S, Narayan R, Raju KVSN (2010) Ind Eng Chem Res 49:4517–4527CrossRefGoogle Scholar
  19. 19.
    Watanabe L, Shirai H, Fuji T, Takahashi MM (2012) J Appl Polym Sci 126:E522–E529CrossRefGoogle Scholar
  20. 20.
    Jung DH, Jeong MA, Jeong HM, Kim BK (2010) Colloid Polym Sci 288:1465–1470CrossRefGoogle Scholar
  21. 21.
    Jung DH, Jeong HM, Kim BK (2010) Mater Chem 20:3458–4366CrossRefGoogle Scholar
  22. 22.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  23. 23.
    Lee SK, Yoon SH, Chung I, Hartwig A, Kim BK (2011) J Polym Sci Part A: Polym Chem 49:634–641CrossRefGoogle Scholar
  24. 24.
    Mishra AK, Narayan R, Aminabhavi TM, Pradhan SK, Raju KVSN (2012) J Appl Polym Sci 125:E67–E75CrossRefGoogle Scholar
  25. 25.
    Hosgor Z, Karatas S, Gungor A, Menceloglu Y (2012) Adv Polym Technol 31:390–400CrossRefGoogle Scholar
  26. 26.
    Athawale VD, Kulkarni MA (2011) Pigment Resin Technol 40:49–57CrossRefGoogle Scholar
  27. 27.
    Kang SM, Kim MJ, Kwon SH, Park H, Jeong HM, Kim BK (2012) J Mater Res 27:2837–2843CrossRefGoogle Scholar
  28. 28.
    Heck CA, Giacomolli DA, Livotto PR, dos Santos JHZ, Wolf CR (2014) J Appl Polym Sci 131:41157CrossRefGoogle Scholar
  29. 29.
    Heck CA, dos Santos JHZ, Wolf CR (2015) Int J Adhes Adhes 58:13–20CrossRefGoogle Scholar
  30. 30.
    Saiani A, Daunch WA, Verbeke H, Leenslag J, Higgins JS (2001) Macromolecules 34:9059–9068CrossRefGoogle Scholar
  31. 31.
    Callister Jr WD, Rethwisch DG (2009) Materials science and engineering: an introduction. Wiley, New YorkGoogle Scholar
  32. 32.
    Nunes RCR, Fonseca JLC, Pereira MR (2000) Polym Test 19:93–103CrossRefGoogle Scholar
  33. 33.
    Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR (2001) Polym Test 20:707–712CrossRefGoogle Scholar
  34. 34.
    Bistricic L, Baranovic G, Leskovac M, Bajsic EG (2010) Eur Polym J 46:1975–1987CrossRefGoogle Scholar
  35. 35.
    Samuels SL, Wilkes GL (1973) J Polym Sci B 11:807–811Google Scholar
  36. 36.
    Saiani A, Novak A, Rodier L, Eeckhaut G, Leenslag J-W, Higgins JS (2007) Macromol 40:7252–7262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cesar A. Heck
    • 1
  • João Henrique Z. dos Santos
    • 1
  • Carlos R. Wolf
    • 2
  1. 1.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de QuímicaUniversidade Luterana do BrasilCanoasBrazil

Personalised recommendations