Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 593–599 | Cite as

Novel fluorescent terphenyl bridged crystalline silsesquioxane through self-directed assembly

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Abstract

A novel silsesquioxane hybrid crystal was synthesized by a facile synthesis and purification process without any structure-directing agent. fourier transform-infrared spectoscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, 13C, 29Si solid-state nuclear magnetic resonance spectroscopy and photoluminescence spectroscopy were employed to characterize the obtained material. X-ray diffraction and transmission electron microscopy revealed the well-ordered features with lamellar spacings in the bridged silsesquioxanes. In addition, the formation of crystalline bridged polysilsesquioxanes with well-organized structure was attributed to self-assembly of the intermolecular hydrogen bonding between the urea groups. Interestingly, the introduction of photoactive terphenyl chromophore into silsesquioxane made bridged polysilsesquioxanes exhibit special fluorescent properties, which could provide a way to fabricate new nanomaterial.

Graphical Abstract

We successfully synthesized a novel crystalline hybrid bridged polysilsesquioxanes (BPS) with well-ordered features arising from the self-assembling of the precursors. Interestingly, the introduction of photoactive terphenyl chromophore into silsesquioxane made hybrid material BPS exhibit bright blue emission. Open image in new window

Keywords

Bridged silsesquioxanes Terphenyl Sol–gel Fluorescence Hydrogen bonds Self-assembly 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21502039, 21271060, 21171046), the Natural Science Foundation of Hebei Province (No. B2016202147, B2016202149), Educational Committee of Hebei Province (LJRC021, QN2015172).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adima A, Moreau JJE, Man MWC (2000) Immobilization of rhodium complexes in chiral organic–inorganic hybrid materials. Chirality 12(5–6):411–420. doi:10.1002/(sici)1520-636x(2000)12:5/6<411::aid-chir21>3.0.co;2-xCrossRefGoogle Scholar
  2. 2.
    Monge-Marcet A, Pleixats R, Cattoën X, Wong Chi Man M (2012) Sol–gel immobilized hoveyda–grubbs complex through the NHC ligand: a recyclable metathesis catalyst. J Mol Catal A: Chem 357:59–66. doi: 10.1016/j.molcata.2012.01.019 CrossRefGoogle Scholar
  3. 3.
    Elias X, Pleixats R, Man MWC, Moreau JJE (2006) Hybrid-bridged silsesquioxane as recyclable metathesis catalyst derived from a bis-silylated hoveyda-type ligand. Adv Synth Catal 348(6):751–762. doi: 10.1002/adsc.200505447 CrossRefGoogle Scholar
  4. 4.
    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592. doi: 10.1039/b509097k CrossRefGoogle Scholar
  5. 5.
    Meyer DJM, Bourg S, Conocar O, Broudic J-C, Moreau JJE, Chi Man MW (2007) Extraction of plutonium and americium using silica hybrid materials. C R Chim 10(10–11):1001–1009. doi: 10.1016/j.crci.2007.04.013 CrossRefGoogle Scholar
  6. 6.
    Feng Y, Li H, Gan Q, Wang Y, Liu B, Zhang H (2010) A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+ ions. J Mater Chem 20(5):972–975CrossRefGoogle Scholar
  7. 7.
    Graffion J, Cattoën X, Freitas VT, Ferreira RA, Man MWC, Carlos LD (2012) Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. J Mater Chem 22(14):6711–6715CrossRefGoogle Scholar
  8. 8.
    Graffion J, Cojocariu AM, Cattoën X, Ferreira RAS, Fernandes VR, Andre PS, Carlos LD, Man MWC, Bartlett JR (2012) Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. J Mater Chem 22(26):13279–13285CrossRefGoogle Scholar
  9. 9.
    Zhang P, Wang Y, Liu H, Chen Y (2011) Preparation and luminescence of europium(iii) terpyridine complex-bridged polysilsesquioxanes. J Mater Chem 21(45):18462–18466. doi: 10.1039/c1jm12894a CrossRefGoogle Scholar
  10. 10.
    Hasobe T (2012) Photo- and electro-functional self-assembled architectures of porphyrins. Phys Chem Chem Phys 14(46):15975–15987. doi: 10.1039/c2cp42957h CrossRefGoogle Scholar
  11. 11.
    Guo S, Matsukawa K, Miyata T, Okubo T, Kuroda K, Shimojima A (2015) Photoinduced bending of self-assembled azobenzene-siloxane hybrid. J Am Chem Soc 137(49):15434–15440. doi: 10.1021/jacs.5b06172 CrossRefGoogle Scholar
  12. 12.
    Fatieiev Y, Croissant JG, Alsaiari S, Moosa BA, Anjum DH, Khashab NM (2015) Photoresponsive bridged silsesquioxane nanoparticles with tunable morphology for light-triggered plasmid DNA delivery. ACS Appl Mater Interfaces 7(45):24993–24997. doi: 10.1021/acsami.5b07365 CrossRefGoogle Scholar
  13. 13.
    Croissant J, Cattoën X, Man MWC, Gallud A, Raehm L, Trens P, Maynadier M, Durand J-O (2014) Biodegradable ethylene-bis(Propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Adv Mater 26(35):6174–6180. doi: 10.1002/adma.201401931 CrossRefGoogle Scholar
  14. 14.
    Croissant JG, Mauriello-Jimenez C, Maynadier M, Cattoen X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M, Maillard P, Durand J-O (2015) Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem Commun 51(61):12324–12327. doi: 10.1039/c5cc03736k CrossRefGoogle Scholar
  15. 15.
    Castricum HL, Paradis GG, Mittelmeijer-Hazeleger MC, Kreiter R, Vente JF, ten Elshof JE (2011) Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv Funct Mater 21(12):2319–2329. doi: 10.1002/adfm.201002361 CrossRefGoogle Scholar
  16. 16.
    Chemtob A, Belon C, Croutxé-Barghorn C, Brendlé J, Soulard M, Rigolet S, Houérou VL, Gauthier C (2010) Bridged polysilsesquioxane films via photoinduced sol-gel chemistry. New J Chem 34(6):1068–1072CrossRefGoogle Scholar
  17. 17.
    Moreau JJ, Vellutini L, Chi Man MW, Bied C, Bantignies J-L, Dieudonné P, Sauvajol J-L (2001) Self-organized hybrid silica with long-range ordered lamellar structure. J Am Chem Soc 123(32):7957–7958CrossRefGoogle Scholar
  18. 18.
    Pichon BP, Wong Chi Man M, Dieudonné P, Bantignies J, Bied C, Sauvajol J, Moreau JJE (2007) Size and shape dependence of organo-interconnected silsesquioxanes through hydrolysis-condensation reaction conditions: nanotubes, spheres and films. Adv Funct Mater 17(14):2349–2355CrossRefGoogle Scholar
  19. 19.
    Zhou X, Yang S, Yu C, Li Z, Yan X, Cao Y, Zhao D (2006) Hexylene- and octylene-bridged polysilsesquioxane hybrid crystals self-assembled by dimeric building blocks with ring structures. Chem - Eur J 12(33):8484–8490. doi: 10.1002/chem.200600182 CrossRefGoogle Scholar
  20. 20.
    Arrachart G, Carcel C, Trens P, Moreau JJE, Wong Chi Man M (2009) Silylated melamine and cyanuric acid as precursors for imprinted and hybrid silica materials with molecular recognition properties. Chem - Eur J 15(25):6279–6288. doi: 10.1002/chem.200900278 CrossRefGoogle Scholar
  21. 21.
    Loy DA, Shea KJ (1995) Bridged Polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev 95(5):1431–1442CrossRefGoogle Scholar
  22. 22.
    Corriu RJP (2000) Ceramics and nanostructures from molecular precursors. Angew Chem, Int Ed 39(39):1376–1398CrossRefGoogle Scholar
  23. 23.
    Pichon BP, Scampini S, Bied C, Moreau JJE, Wong Chi Man M (2012) The influence of arylene and alkylene units on the structuring of urea-based bridged silsesquioxanes. Eur J Inorg Chem 2012(32):5312–5322. doi: 10.1002/ejic.201200616 CrossRefGoogle Scholar
  24. 24.
    Mizoshita N, Tani T, Shinokubo H, Inagaki S (2012) Mesoporous organosilica hybrids consisting of silica-wrapped π–π stacking columns. Angew Chem, Int Ed 51(5):1156–1160. doi: 10.1002/anie.201105394 CrossRefGoogle Scholar
  25. 25.
    Mizoshita N, Inagaki S (2015) Periodic mesoporous organosilica with molecular-scale ordering self-assembled by hydrogen bonds. Angew Chem, Int Ed 54(41):11999–12003CrossRefGoogle Scholar
  26. 26.
    Carlos LD, Bermudez VdZ, Amaral VS, Nunes SC, Silva NJO, Ferreira RAS, Rocha J, Santilli CV, Ostrovskii D (2007) Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkyl/siloxane hybrids †. Adv Mater 19(3):341–348CrossRefGoogle Scholar
  27. 27.
    Corriu RJ (2000) Ceramics and nanostructures from molecular precursors. Angew Chem, Int Ed 39(8):1376–1398CrossRefGoogle Scholar
  28. 28.
    Luo Y, Lin J, Duan H, Zhang J, Lin C (2005) Self-directed assembly of photoactive perylenediimide-bridged silsesquioxane into a superlong tubular structure. Chem Mater 17(9):2234–2236CrossRefGoogle Scholar
  29. 29.
    Romeo HE, Cameo M, Choren MV, Fanovich MA (2011) Functionalized bridged silsesquioxane-based nanostructured microspheres: ultrasound-assisted synthesis and in vitro cytotoxicity characterization. J Mater Sci Mater Med 22(4):935–943CrossRefGoogle Scholar
  30. 30.
    Moreau JJE, Pichon BP, Bied C, Man MWC (2005) Structuring of bridged silsesquioxanes via cooperative weak interactions: H-bonding of urea groups and hydrophobic interactions of long alkylene chains. J Mater Chem 15:3929–3936CrossRefGoogle Scholar
  31. 31.
    Moreau JJ, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies JL, Sauvajol JL (2005) Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions. Chem - Eur J 11(5):1527–1537CrossRefGoogle Scholar
  32. 32.
    Moreau JLJE, Pichon BTP, Michel WCM, Catherine B, Hans P, Jean-Louis B, Philippe D, Jean-Louis S (2004) A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem 43(2):203–206CrossRefGoogle Scholar
  33. 33.
    Pichon BP, Scampini S, Bied C, Moreau JJE, Michel WCM (2012) Influence of arylene and alkylene units on the structuring of urea-based bridged silsesquioxanes. Eur J Inorg Chem 2012(32):5312–5322CrossRefGoogle Scholar
  34. 34.
    Nobre SS, Brites CD, Ferreira RA, de Zea Bermudez V, Carcel C, Moreau JJ, Rocha J, Man MWC, Carlos LD (2008) Photoluminescence of Eu (III)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. J Mater Chem 18(35):4172–4182CrossRefGoogle Scholar
  35. 35.
    Nobre SS, Ferreira RAS, Cattoën X, Benyahya S, Taillefer M, Bermudez VdZ, Man MWC, Carlos LD (2010) Lanthanide-containing 2,2′-bipyridine bridged urea cross-linked polysilsesquioxanes. Spectrosc Lett 43(5):321–332CrossRefGoogle Scholar
  36. 36.
    Graffion J, Cattoën X, Wong Chi Man M, Fernandes VR, André PS, Ferreira RA, Carlos LD (2011) Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu3+-complexed n, n'-Diureido-2,2′-bipyridine isomers: application for luminescent solar concentrators. Chem Mater 23(21):4773–4782CrossRefGoogle Scholar
  37. 37.
    Rodrigues MJE, Paz FAA, Ferreira RAS, Carlos LD, Nogueira HIS (2006) Polynuclear molybdenum and tungsten complexes containing 3-hydroxypicolinic acid and Europium (III). Mater Sci Forum 2006:1305–1312CrossRefGoogle Scholar
  38. 38.
    Fasce DP, Williams RJJ, Matějka L, Pleštil J, Brus J, Serrano B, Cabanelas JC, Baselga J (2006) Photoluminescence of bridged silsesquioxanes containing urea or urethane groups with nanostructures generated by the competition between the rates of self-assembly of organic domains and the inorganic polycondensation. Macromolecules 39(11):3794–3801CrossRefGoogle Scholar
  39. 39.
    Hu R, Zhu Q, Chen W, Liu H, Yao B, Zhan J, Hao J, Han CC (2012) Ordered dichloro-biphenylene-bridged silsesquioxanes fabricated by interfacial polymerization. Polymer (Guildf) 53(2):267–271CrossRefGoogle Scholar
  40. 40.
    Pichon BP, Man MWC, Bied C, Moreau JJ (2006) A simple access to ω-aminoalkyltrialkoxysilanes: tunable linkers for self-organised organosilicas. J Organomet Chem 691(6):1126–1130CrossRefGoogle Scholar
  41. 41.
    Moreau JJ, Pichon BP, Wong Chi Man M, Bied C, Pritzkow H, Bantignies JL, Dieudonné P, Sauvajol JL (2004) A better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem, Int Ed 43(2):203–206CrossRefGoogle Scholar
  42. 42.
    Fernandes M, Nobre SS, Qinghong X, Carcel C, Cachia JN, Cattoën X, Sousa JM, Ferreira RA, Carlos LD, Santilli CV (2011) Self-structuring of lamellar bridged silsesquioxanes with long side spacers. J Phys Chem B 115(37):10877–10891CrossRefGoogle Scholar
  43. 43.
    Goto Y, Mizoshita N, Ohtani O, Okada T, Shimada T, Tani T, Inagaki S (2008) Synthesis of mesoporous aromatic silica thin films and their optical properties. Chem Mater 20(13):4495–4498CrossRefGoogle Scholar
  44. 44.
    Bao C, Lu R, Jin M, Xue P, Tan C, Xu T, Liu G, Zhao Y (2006) Triphenyl benzene-bridged fluorescent silsesquioxane: shape-controlled hybrid silicas by hydrolytic conditions. J Nanosci Nanotechnol 6(8):2560–2565CrossRefGoogle Scholar
  45. 45.
    Carlos LD, Ferreira RAS, Bermudez VDZ, Ribeiro SJL (2001) Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions. Adv Funct Mater 11(2):111–115CrossRefGoogle Scholar
  46. 46.
    Molina EF, Marçal L, Nassar EJ, Ciuffi KJ (2013) Tri-ureasil gel as a multifunctional organic–inorganic hybrid matrix. Polym Chem 4(5):1575–1582CrossRefGoogle Scholar
  47. 47.
    Nobre SS, Cattoën X, Ferreira RAS, Wong Chi Man M, Carlos LD (2010) Efficient spectrally dynamic blue-to-green emission of bipyridine-based bridged silsesquioxanes for solid-state lighting. Phys Status Solidi RR 4(3–4):55–57CrossRefGoogle Scholar
  48. 48.
    Willis-Fox N, Kraft M, Arlt J, Scherf U, Evans RC (2016) Tunable white-light emission from conjugated polymer-di-ureasil materials. Adv Funct Mater 26(4):532–542CrossRefGoogle Scholar
  49. 49.
    Liu P, Li H, Wang Y, Liu B, Zhang W, Wang Y, Yan W, Zhang H, Schubert U (2008) Europium complexes immobilization on titaniavia chemical modification of titanium alkoxide. J Mater Chem 18(7):735–737CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinP. R. China

Personalised recommendations