Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 586–592 | Cite as

Photoluminescence properties of Gd:ZnO nano phosphor

  • Suman Rani
  • Bansi Lal
  • Sumit Saxena
  • Shobha Shukla
Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications


Gd (0.1, 0.5, 1.0 mol%) doped ZnO nano phosphor, prepared by wet chemical method followed by sintering in air at 700 °C, was characterized by XRD, EDX, SEM, and photoluminescence techniques. EDX confirmed the doping of Gd in ZnO, while XRD patterns showed that the ZnO wurtzite crystal structure remained unchanged on doping. Nanostructure nature of the prepared samples was confirmed from XRD data as well as from SEM images. The photoluminescence in visible region (400–700 nm) was observed when excited with 280, 300, 345, 395, and 460 nm radiation from a Xe lamp. The observed emission when excited with 280, 300, and 345 nm radiation shows concentration quenching, which could be explained in terms of 4f–4f transitions of Gd3+. The intensity of this emission is maximum for 0.5 mol% Gd:ZnO when excited by 300 nm. The chromaticity coordinates of this emission are x = 0.31 and y = 0.32 indicating its potential for the realization of optical sources/displays. On the other hand the emission excited by 395 and 460 nm radiation consists of relatively sharp peaks in blue, green and red regions. This emission is better explained in terms of the defects in ZnO. However, marginal increase in the intensity of this emission with the increase in the concentration of Gd shows the increase in defect density with Gd doping.

Graphical Abstract

(a) Integrated PL intensity as a function of Gd concentration (b) Chromaticity color coordinates x = 0.31 and y = 0.32 Open image in new window


Gd:ZnO Photoluminescence Rare earths White light source Nano phosphor 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Sivakami R, Thiyagarajan P (2016) Nano-Struct Nano-objects 6:59–66CrossRefGoogle Scholar
  2. 2.
    Wang Y, Zhu G, Xin S, Wang Q, Li Y, Wu Q, Wang C, Wang X, Ding X, Geng W (2015) J Rare Earths 33:1–12CrossRefGoogle Scholar
  3. 3.
    Xie RJ, Hirosaki N, Li Y, Takeda T (2010) Materials 3:3777–3793CrossRefGoogle Scholar
  4. 4.
    Li YC, Chang YH, Lin YF, Chang YS, Lin YJ (2007) J Alloys Compd 439:367–575CrossRefGoogle Scholar
  5. 5.
    Lin Y, Tang Z, Zhang Z, Nan C (2003) J Eur Ceram Soc 23:175–178CrossRefGoogle Scholar
  6. 6.
    Ronda CR, Jestel U, Nikol H (1998) J Alloys Compd 275-277:669–676CrossRefGoogle Scholar
  7. 7.
    Zamiri R, Lemos AR, Reblo A, Ahangar HA, Ferreira JMF (2014) Ceram Int 40:523–529CrossRefGoogle Scholar
  8. 8.
    Honglin Li, Yingbo Lv, Jinzhu Li, Ke Y (2014) J Alloys Compd 617:102–107CrossRefGoogle Scholar
  9. 9.
    Li H, Zhang Z (2013) J Alloys Compd 550:526–530CrossRefGoogle Scholar
  10. 10.
    Geburt S, Stichtenoth D, Muller S, Dewald W, Ronning C, Wang J, Jiao Y, Rao YY, Hark SK, Li Q (2008) J Nanosci Nanotechnol 8:244–251CrossRefGoogle Scholar
  11. 11.
    Bhushan S, Pandey AN, Kaze BR (1979) J Lumin 20:29–38CrossRefGoogle Scholar
  12. 12.
    Yayapao O, Thongtem T, Phuruangrat A, Thongtem S (2015) Mat Sci Semicon Proc 39:786–792CrossRefGoogle Scholar
  13. 13.
    Noel JL, Udayabhaskar R, Renganathan B, Mariappan SM, Sastikumar D, Karthikeyan B (2014) Spectrochim Acta A 132:634–638CrossRefGoogle Scholar
  14. 14.
    Khataee A, Soltani RDC, Karimi A, Joo SW (2015) Ultrason Sonochem 23:219–230CrossRefGoogle Scholar
  15. 15.
    Mackova A, Malinsky P, Sofer Z, Simek P, Sedmidubsky D, Mikulics M, Wilhelm RA (2014) Nucl Instrum MethB 332:80–84CrossRefGoogle Scholar
  16. 16.
    Ma X (2012) Thin Solid Films 520:5752–5755CrossRefGoogle Scholar
  17. 17.
    Dakhel AA, El-Hilo M (2010) J Appl Phys 107:123905CrossRefGoogle Scholar
  18. 18.
    Baturay S, Ocak YS (2015) J Alloys Compd 645:29–33CrossRefGoogle Scholar
  19. 19.
    Oprea O, Vasile OR, Voicu G, Craciun L, Andreonescu E (2012) Dig J Nanomater Biostruct 7:1757–1766Google Scholar
  20. 20.
    Ma X, Wang Z (2012) Mat Sci Semicon Proc 15:227–231CrossRefGoogle Scholar
  21. 21.
    Dieke GH (1968) Spectra and energy levels of rare earth ions in crystals. Interscience Publishers, New YorkGoogle Scholar
  22. 22.
    Murmu PP, Mendelsberg RJ, Kennedy J, Carder DA, Ruck BJ, Markwitz A, Reeves RJ, Malar P, Osipowicz T (2011) J Appl Phys 110:033534CrossRefGoogle Scholar
  23. 23.
    Strasser A, Vogler A (2004) Inorg Chim Acta 357:2345–2348CrossRefGoogle Scholar
  24. 24.
    Lin KF, Cheng HM, Hsu HC, Lin LJ, HsiehWF (2005) Chem Phys Lett 409:208–211CrossRefGoogle Scholar
  25. 25.
    Alexander A, Klug H P (1950) J Appl Phys 21:137–142Google Scholar
  26. 26.
    Rodnyi PA, Khodyk IV (2011) Opt Spectrosc 111:776–785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, School of SciencesLovely Professional UniversityPunjabIndia
  2. 2.Sankofa AdvisorsVasant Vihar ThaneIndia
  3. 3.Nanosructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials ScienceIIT BombayPowaiIndia

Personalised recommendations