Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 483–492 | Cite as

Investigation of structural, morphological, optical, and magnetic properties of Sm-doped LaFeO3 nanopowders prepared by sol–gel method

  • Ekaphan Swatsitang
  • Attaphol Karaphun
  • Sumalin Phokha
  • Sitchai Hunpratub
  • Thanin Putjuso
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Pure orthorhombic phase of La1−xSmxFeO3 (x = 0, 0.1, 0.2, and 0.3) nanoparticles can be obtained by sol–gel method after calcination at 800 °C for 3 h in air. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray absorption near edge spectroscopy, ultraviolet-visible spectroscopy, and vibrating sample magnetometry were used to study the crystal structure, morphology, oxidation state, functional group, optical, and magnetic properties of samples. Pure orthorhombic phase of perovskite structure is confirmed by X-ray diffraction results. Decreasing lattice parameters, crystallite sizes, and cell volumes with increasing microstrains indicate structure distortion due to the substitution of Sm ions with small ionic radius on the La sites in the orthorhombic structure. Scanning electron microscopy and transmission electron microscopy images show a homogeneous distribution of almost spherical nanoparticles with decreasing average particle sizes ranging from 56.48 ± 3.22 to 23.21 ± 4.40 nm for samples of high Sm content. Fourier transform infrared spectroscopy spectra confirm the Fe–O stretching mode in octahedral FeO6 unit of a perovskite structure. X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy results indicate the oxidation states +3 of La and Fe ions. The optical band gaps are found to decrease from 2.218 to 1.880 eV with increasing Sm content. vibrating sample magnetometry results show the antiferromagnetic behavior of undoped sample and ferromagnetic behavior for doped samples, affecting by structure distortion and particle size reduction. Interestingly, the coercive field is significantly enhanced from 95.07 Oe (x = 0.1) to 13,062.79 Oe (x = 0.3). Curie temperature (T c) is suggested to be above 400 K.

Graphical Abstract

The magnetization curves of La1-xSmxFeO3 (x = 0.0, 0.1, 0.2, and 0.3) nanoparticles prepared by the sol-gel method with the inset show the comparing coercive forces (Hc) of the present work and the previous works, La0.7M0.3FeO3 (M = Al and Ga). Sm-doped LaFeO3 nanoparticles can exhibit ferromagnetic behavior with the significant enhancement of Hc from 95.07 to 13,062.79 Oe. Open image in new window


Sm-doped LaFeO3 Sol–gel method Optical properties Magnetic properties 



This work was financially supported by the Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Thailand. Financial assistance also comes from the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand through its program of Center of Excellence Network. Thanks are due to Rajamangala University of Technology Rattanakosin Wang Klai Kangwon Campus, Thailand (Grant A21/2559) for co-providing financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Dixon CAL, Kavanagh CM, Knight KS, Kockelmann W, Morrison FD, Lightfoot P (2015) Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3. J Solid State Chem 230:337CrossRefGoogle Scholar
  2. 2.
    Ciambelli P, Cimino S, De Rossi S, Lis L, Minelli G, Porta P, Russo G (2001) AFeO3 (A = La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl Catal B 29:239CrossRefGoogle Scholar
  3. 3.
    Phokha S, Pinitsoontorn S, Rujirawat S, Maensiri S (2015) Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Physica B 476:55CrossRefGoogle Scholar
  4. 4.
    Hao Hung M, Madhava Rao MV, Shyang Tsai D (2007) Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater Chem Phys 101:297CrossRefGoogle Scholar
  5. 5.
    Wang Y, Yang X, Lu L, Wang X (2006) Experimental study on preparation of LaMO3 (M = Fe, Co, Ni) nanocrystals and their catalytic activity. Thermochim Acta 443:225CrossRefGoogle Scholar
  6. 6.
    Khetre SM, Chopade AU, Khilare CJ, Kulal SR, Jadhav HV, Jagadale PN, Bangale SV, Bamane SR (2014) Ethanol gas sensing properties of nano-porous LaFeO3 thick films. J of Shivaji Uni (Sci & Tech) 41(2):250–5347Google Scholar
  7. 7.
    Minh DL, Mai Hoa VN, Ngoc Dinh N, Thi Thuy N (2013) Electric and thermoelectric properties of LaFeO3 compounds doped by Ti, Co and Cu ions. VNU J Mathematics Physics 29(3):42Google Scholar
  8. 8.
    Paul Blessington Selvadurai A, Pazhanivelu V, Jagadeeshwaran C, Murugaraj R, Panneer Muthuselvam I, Chou FC (2015) Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. J Alloys Compd 646:924CrossRefGoogle Scholar
  9. 9.
    Phokha S, Hunpratup S, Pinitsoontorn S, Putasaeng B, Rujirawat S, Maensiri S (2015) Structure, magnetic, and dielectric properties of Ti-doped LaFeO3 ceramics synthesized by polymer pyrolysis method. Mater Res B 67:118CrossRefGoogle Scholar
  10. 10.
    Thirumalairajan S, Girija K, Mastelar VR, Ponpandian N (2015) Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures. J Mater Sci: Mater Electron. 26:8652–8662Google Scholar
  11. 11.
    Acharya S, Mondal J, Ghosh S, Roy SK, Chakrabarti PK (2010) Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater Lett 64:415CrossRefGoogle Scholar
  12. 12.
    Xu X, Guoqiangn T, Huijun R, Ao X (2013) Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol–gel process. Ceram Inter 39:6223CrossRefGoogle Scholar
  13. 13.
    Mazumder R, Ghosh S, Mondal P, Bhattacharya D, Dasgupta S, Das N, Sen A, Tyagi AK, Sivakumar M, Takami T, Ikuta H (2006) Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J Appl Phys 100:1CrossRefGoogle Scholar
  14. 14.
    Todd MR, Gary LC, James MA (1993) Combined magnetic-dipole and electric-quadrupole hyperfine interactions in rare-earth orthoferrite ceramics. Phys Rev B 48:224CrossRefGoogle Scholar
  15. 15.
    Treves D (1965) Studies on Orthoferrites at the Weizmann Institute of Science. J Appl Phys 36:1033CrossRefGoogle Scholar
  16. 16.
    Kodama RH, Berkowitz AE (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys Rev B 59:6321CrossRefGoogle Scholar
  17. 17.
    Lee YC, Parkhomov AB, Krishnan KM (2010) Size-driven magnetic transitions in monodisperse MnO nanocrystals. J Appl Phys 107: 09E124-1-3.Google Scholar
  18. 18.
    Fujii T, Matsusue I, Nakatsuka D, Nakanishi M, Takada J (2011) Synthesis and anomalous magnetic properties of LaFeO3 nanoparticles by hot soap method. Mater Chem Phys 129:805CrossRefGoogle Scholar
  19. 19.
    Köferstein R, Jäger L, Ebbinghaus SG (2013) Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ionics 249:1CrossRefGoogle Scholar
  20. 20.
    Janbutrach Y, Hunpratub S, Swatsitang E (2014) Ferromagnetism and optical properties of La1−xAlxFeO3 nanopowders. Nanoscale Res Lett 9:498CrossRefGoogle Scholar
  21. 21.
    Hunpratub S, Karaphun A, Phokha S, Swatsitang E (2016) Optical and magnetic properties of La1−xGaxFeO3 nanoparticles synthesized by polymerization complex method. Appl Surf Sci 380:52CrossRefGoogle Scholar
  22. 22.
    Barbero B, Gamboa JA, Cadus LE (2006) Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B 65:21CrossRefGoogle Scholar
  23. 23.
    Shikha P, Kang TS, Randhawa BS (2015) Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles. J Alloys Compd 625:336CrossRefGoogle Scholar
  24. 24.
    Prasad BV, Rao BV, Narsaiah K, Rao GN, Chen JW, Babu DS (2015) Preparation and characterization of perovskite Cu doped LaFeO3 semiconductor ceramics. IOP Conf Series: Mater Sci Eng 73:012129CrossRefGoogle Scholar
  25. 25.
    Chandrasekhar KD, Mallesh S, Murthy JK, Das AK, Venimadhav A (2014) Role of defects and oxygen vacancies on dielectric and magnetic properties of Pb2+ ion doped LaFeO3 polycrystalline ceramics. Physica B 448:304CrossRefGoogle Scholar
  26. 26.
    Phokha S, Hunpratup S, Pinitsoontorn S, Maensiri S (2015) Structure, magnetic, and dielectric properties of Ti-doped LaFeO3 ceramics synthesized by polymer pyrolysis method. Mater Res Bull 67:118CrossRefGoogle Scholar
  27. 27.
    Lüning J, Nolting F, Scholl A, Ohldag H, Seo JW, Fompeyrine J, Locquet J-P, Stöhr J (2003) Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy. Phys Rev B 67:214433CrossRefGoogle Scholar
  28. 28.
    Li S, Wang X (2015) Synthesis of different morphologies lanthanum ferrite (LaFeO3) fibers via electrospinning. Optik 126:408CrossRefGoogle Scholar
  29. 29.
    Xiao H, Xue C, Song P, Li J, Wang Q (2015) Preparation of porous LaFeO3 microspheres and their gas-sensing properties. Appl Surf Sci 337:65CrossRefGoogle Scholar
  30. 30.
    Tang P, Tong Y, Chen H, Cao F, Pan (2013) Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Appl Phys 13:340Google Scholar
  31. 31.
    Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurunc Y, Nowikd I (2004) Sonochemical synthesis of nanocrystalline LaFeO3. J Mater Chem 14:764CrossRefGoogle Scholar
  32. 32.
    Velichkova MM, Lazarova T, Tumbalev V, Ivanov G, Kovacheva D, Stefanov P, Naydenov A (2013) Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts. Chem Eng J 231:236CrossRefGoogle Scholar
  33. 33.
    Kansara SB, Dhruv D, Joshi Z, Pandy DD, Rayaprol S, Solanki PS, Kuberkar DG, Shah NA (2015) Structure and microstructure dependent transport and magneticproperties of sol–gel grown nanostructured La0.6Nd0.1Sr0.3MnO3 manganites: role of oxygen. Appl Surf Sci 356:1272CrossRefGoogle Scholar
  34. 34.
    Liua T, Xu Y (2011) Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route. Mater Chem Phys 129:1047CrossRefGoogle Scholar
  35. 35.
    Yang Z, Huang Y, Dong B, Li HL (2006) Controlled synthesis of highly ordered LaFeO3 nanowires using a citrate-based sol–gel route. Mater Res B 41:274CrossRefGoogle Scholar
  36. 36.
    Cullity BD, Stock SR (2001) Elements of X-ray Diffraction. 3rd edn, Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  37. 37.
    Majeed Khan MA, Kumar S, Ahamed M (2015) Structural, electrical and optical properties of nanocrystalline silicon thin films deposited by pulsed laser ablation. Mat Sci Semicon Proc 30:169CrossRefGoogle Scholar
  38. 38.
    Cho YG, Choi KH, Kim YR, Jung JS, Lee SH (2009) Characterization and catalytic properties of surface La-rich LaFeO3 perovskite. Bull Korean Chem Soc 30:6Google Scholar
  39. 39.
    Lee WY, Yun HJ, Yoon JW (2014) Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospinning. J Alloys Compd 583:320CrossRefGoogle Scholar
  40. 40.
    Jaiswal A, Das R, Maity T, Vivekan K, Abraham PM, Adyanthaya S, Poddar P (2010) Temperature-dependent raman and dielectric spectroscopy of BiFeO3 nanoparticles: signatures of spin-phonon and magnetoelectric coupling. J Phys Chem C 114:2108CrossRefGoogle Scholar
  41. 41.
    Schuele WJ, Deetscreek VD (1962) Appearance of a weak ferromagnetism in fine particles of antiferromagnetic materials. J Appl Phys 33:1136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ekaphan Swatsitang
    • 1
    • 2
  • Attaphol Karaphun
    • 1
    • 2
  • Sumalin Phokha
    • 3
  • Sitchai Hunpratub
    • 3
  • Thanin Putjuso
    • 4
  1. 1.Integrated Nanotechnology Research Center, Department of Physics, Department of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon KaenThailand
  3. 3.Department of Physics, Department of ScienceUdon Thani Rajabhat UniversityUdon ThaniThailand
  4. 4.Rajamangala University of Technology Rattanakosin Wang Klai Kangwon CampusPrachuap Khiri KhanThailand

Personalised recommendations