Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 468–474 | Cite as

Mesoporous titania nanofibers by solution blow spinning

  • Manuel Gonzalez-Abrego
  • Araceli Hernandez-Granados
  • Cynthia Guerrero-Bermea
  • Azael Martinez de la Cruz
  • Domingo Garcia-Gutierrez
  • Selene Sepulveda-Guzman
  • Rodolfo Cruz-Silva
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Abstract

Fast and large-scale production of mesoporous titania nanofibers was achieved by solution blow spinning. The blow spinning setup provides a method to prepare titania nanofibers in a safe and scalable way without using a high-voltage electric field. Titania microstructure and porosity can be modified by adding a suitable template, such as pluronic polymers. The blow spun titania nanofibers had a good performance on the photocatalytic degradation of tetracycline and could be easily removed from the tetracycline aqueous solution due to their large aspect ratio. Solution blow spinning method has a great potential for the large-scale production of titania nanofibers with good photocatalytic properties.

Graphical Abstract

Open image in new window

Keywords

Sol-gel Ceramic nanofibers Photocatalyst Tetracycline Pluronic polymers 

Notes

Acknowledgments

The authors wish to thank CONACYT-Mexico for its support through CB-239354 project and Mario Hernandez for his 3D model of the spinneret. R. Cruz-Silva thanks the support of the Center of Innovation Program from Japan Science and Technology Agency, JST.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10971_2016_4210_MOESM1_ESM.pdf (435 kb)
Supplementary Information

References

  1. 1.
    Zhang W, Zhu R, Ke L, Liu X, Liu B, Ramakrishna S (2010) Small 6:2176–2182CrossRefGoogle Scholar
  2. 2.
    Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) ACS Appl Mater Interfaces 1:1140–1143CrossRefGoogle Scholar
  3. 3.
    Zheng Z, Liu H, Ye J, Zhao J, Waclawik ER, Zhu H (2010) J Mol Catal A-Chem 316:75–82CrossRefGoogle Scholar
  4. 4.
    Li D, McCann JT, Gratt M, Xia YN (2004) Chem Phys Lett 394:387–391CrossRefGoogle Scholar
  5. 5.
    Caruso RA, Schattka JH, Greiner A (2001) Adv Mater 13:1577–1579CrossRefGoogle Scholar
  6. 6.
    Kim S-W, Han TH, Kim J, Gwon H, Moon H-S, Kang S-W, Kim SO, Kang K (2009) Acs Nano 3:1085–1090CrossRefGoogle Scholar
  7. 7.
    Li D, Xia YN (2003) Nano Lett 3:555–560CrossRefGoogle Scholar
  8. 8.
    Li D, Xia YN (2004) Nano Lett 4:933–938CrossRefGoogle Scholar
  9. 9.
    Yang G, Chang W, Yan W (2014) J Sol-Gel Sci Technol 69:473–479CrossRefGoogle Scholar
  10. 10.
    Qin D, Liang G, Gu A, Yuan L (2013) J Sol-Gel Sci Technol 67:451–457CrossRefGoogle Scholar
  11. 11.
    Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Chem Soc Rev 41:4708–4735CrossRefGoogle Scholar
  12. 12.
    Vasquez H, Gutierrez H, Lozano K, Leal G (2015) J Eng Fiber Fabr 10:129–136Google Scholar
  13. 13.
    Bao N, Wei Z, Ma Z, Liu F, Yin GJ (2010) J Hazar Mater 174:129–136CrossRefGoogle Scholar
  14. 14.
    Liu H, Zhou X, Chen Y, Li T, Pei S (2014) J Sol-Gel Sci Technol 71:102–108CrossRefGoogle Scholar
  15. 15.
    Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC (2009) J Appl Polym Sci 113:2322–2330CrossRefGoogle Scholar
  16. 16.
    Cheng B, Tao X, Shi L, Yan G, Zhuang X (2014) Ceram Int 40:15013–15018CrossRefGoogle Scholar
  17. 17.
    Li L, Kang W, Zhuang X, Shi J, Zhao Y, Cheng B (2015) Mater Lett 160:533–536CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay S, Saha J, De G (2014) J Mater Chem A 2:19029–19035CrossRefGoogle Scholar
  19. 19.
    Abdal-hay A, Hamdy AS, Lim JH (2014) Ceram Int 40:15403–15409CrossRefGoogle Scholar
  20. 20.
    Lisboa Costa D, Santos Leite R, Araujo Neves G, Navarro de Lima Santana L, Souto Medeiros E, Rodrigues Menezes R (2016) Mat Lett 183:109–113CrossRefGoogle Scholar
  21. 21.
    Abdal-hay A, Hamdy MAS, Khalil KA (2015) ACS Appl Mater Interfaces 7:13329–13341CrossRefGoogle Scholar
  22. 22.
    Costa RGF, Brichi GS, Ribeiro C, Mattoso LHC (2016) Polym Bull. doi: 10.1007/s00289-016-1635-1
  23. 23.
    Li H, Zhang W, Pan W (2011) J Am Ceram Soc 94:3184–3187CrossRefGoogle Scholar
  24. 24.
    Kartini I, Meredith P, Da Costa JCD, Lu GQ (2004) J Sol-Gel Sci Technol 31:185–189CrossRefGoogle Scholar
  25. 25.
    Lopez R, Gomez R (2012) J Sol-Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  26. 26.
    Zhang QH, Gao L, Guo JK (2000) Appl Catal B-Environ 26:207–215CrossRefGoogle Scholar
  27. 27.
    Jang HD, Kim SK, Kim SJ (2001) J Nanopart Res 3:141–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manuel Gonzalez-Abrego
    • 1
  • Araceli Hernandez-Granados
    • 2
  • Cynthia Guerrero-Bermea
    • 1
  • Azael Martinez de la Cruz
    • 1
  • Domingo Garcia-Gutierrez
    • 1
  • Selene Sepulveda-Guzman
    • 1
  • Rodolfo Cruz-Silva
    • 3
  1. 1.FIME-CIIDITUniversidad Autónoma de Nuevo León, Ave. Universidad s/n, Ciudad UniversitariaSan Nicolás de los GarzaMexico
  2. 2.Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Research Center for Exotic Nanocarbons Shinshu UniversityNaganoJapan

Personalised recommendations