Skip to main content
Log in

Novel hollow microspheres MnxCo3−xO4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hollow microspheres MnCo2O4 and CoMn2O4 have been synthesized by a facile solvothermal route followed by pyrolysis of the carbonate counterparts and carbon microspheres, using carbon microspheres as the template. The NH3-selective catalytic reduction reaction was used to test the catalytic activity. The obtained hollow microspheres are composed of numerous primary particles with sizes of tens of nanometers, giving a porous shell. The obtained CoMn2O4 microsphere shows better low-temperature catalytic activity and N2 selectivity than MnCo2O4 microsphere in the NH3-selective catalytic reduction reaction. The X-ray photoelectron spectroscopy results demonstrate that CoMn2O4 microsphere has a relatively higher number content of Mn3+ and chemisorbed oxygen species. The temperature-programmed desorption by ammonia and in situ diffuse reflectance infrared Fourier transform spectroscopy results indicate that the CoMn2O4 microsphere possesses stronger Lewis acid strength than the MnCo2O4 microsphere. Additionally, the CoMn2O4 microsphere also presented outstanding stability, H2O resistance and SO2 tolerance.

Graphical Abstract

The NH3-SCR reaction mechanism is proposed that NH3(g) is adsorbed on the surface of Lewis acid sites and Brønsted acid sites in the shape of NH4 + ions and gaseous NH3. Besides, the adsorption of NO could exist in the form of gaseous or oxide ions NO2 on the surface of catalysts.The adsorbed NH3 species could react with NO2 species easily to produce NH4NO2, which subsequently to produce the innocuous N2 and H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu ZM, Lua YN, Yua L, Ma LL, Zheng LR, Zhang J, Hu TD (2016) Appl Catal B: Environ 188:189–197

    Article  Google Scholar 

  2. Tang CJ, Zhang HL, Dong L (2016) Catal Sci Technol 6:1248–1264

    Article  Google Scholar 

  3. Liu F, Asakurab K, He H, Liu Y, Shan W, Shi X, Zhang C (2011) Catal Today 164:520–530

    Article  Google Scholar 

  4. Gao X, Liu S, Zhang Y, Luo Z, Cen K (2011) J Hazard Mater 188:58–64

    Article  Google Scholar 

  5. Chang HZ, Jong MT, Wang CZ, Qu RY, Du Y, Li JH, Hao JM (2013) Environ Sci Technol 47:11692–11699

    Article  Google Scholar 

  6. Maqbool MS, Pullur AK, Ha HP (2014) Appl Catal B: Environ 152-153:28–35

    Article  Google Scholar 

  7. Hea YY, Forda ME, Zhu MH, Liu QC, Wu ZL, Wach IE (2016) Appl Catal B: Environ 188:123–133

    Article  Google Scholar 

  8. Wu Z, Jiang B, Liu Y (2008) Appl Catal B 79:347–354

    Article  Google Scholar 

  9. Chen L, Li JH, Ge M (2010) Environ Sci Technol 44:9590–9596

    Article  Google Scholar 

  10. Liu F, He H, Zhang C, Shan W, Shi X (2011) Catal Today 175:18–26

    Article  Google Scholar 

  11. Li X, Li JH, Peng Y, Chang HZ, Zhang T, Zhao S, Si WZ, Hao JM (2016) Appl Catal B 184:246–257

    Article  Google Scholar 

  12. He CH, Kohler K (2011) J Phys Chem C 115:1248–1254

    Article  Google Scholar 

  13. Bin F, Song CL, Lv G, Song J, Cao XF, Pang HT, Wang KP (2012) J Phys Chem C 116:26262–26274

    Article  Google Scholar 

  14. Wallin M, Forser S, Thormahlen P, Skoglundh M (2004) Ind Eng Chem Res 43:7723–7731

    Article  Google Scholar 

  15. Pietrzyk P, Dujardin C, Marek KG, Granger P, Sojkaa Z (2012) Phys Chem Chem Phys 14:2203–2215

    Article  Google Scholar 

  16. Shu Z, Huang WM, Hua ZL, Zhang LX, Cui XZ, Chen Y, Chen HR, Wei CY, Wang YX, Fan XQ, Yao HL, He DN, Shi JL (2013) J Mater Chem A 1:10218–10227

    Article  Google Scholar 

  17. Mihaylov M, Hadjiivanov K (2004) Chem Commun 5:2200–2209

    Article  Google Scholar 

  18. Fang C, Zhang DS, Cai SJ, Zhang L, Huang L, Li HR, Maitarad P, Shi LY, Gao RH, Zhang JP (2013) Nanoscale 5:9199–9207

    Article  Google Scholar 

  19. Chang HZ, Chen XY, Li JH, Ma L, Wang CZ, Liu CX, Schwank JW, Hao JM (2013) Environ Sci Technol 47:5294–5301

    Article  Google Scholar 

  20. Tian W, Yang HS, Fan XY, Zhang XB (2011) J Hazard Mater 188:105–109

    Article  Google Scholar 

  21. Wan Y, Zhao W, Tang Y, Li L, Wang H, Cui Y, Gu J, Li Y, Shi J (2014) Appl Catal B 148-149:114–121

    Article  Google Scholar 

  22. Meng B, Zhao ZB, Wang XZ, Liang JJ, Qiu JS (2013) Appl Catal B: Environ 129:491–500

    Article  Google Scholar 

  23. Yang S, Wanga C, Li J, Yan N, Ma L, Chang H (2013) Appl Catal B 110:71–79

    Article  Google Scholar 

  24. Zhang L, Zhang DS, Zhang JP, Cai SX, Fang C, Huang L, Li HR, Gao RH, Shi LY (2013) Nanoscale 5:9821–9829

    Article  Google Scholar 

  25. Zhang DS, Zhang L, Fang C, Gao R, Qian YL, Shi LY, Zhang JP (2013) RSC Adv 3:8811–8819

    Article  Google Scholar 

  26. Aguilera DA, Perez A, Molina R, Moreno S (2011) Appl Catal B: Environ 104:144–150

    Article  Google Scholar 

  27. Shi C, Wang Y, Zhu A, Chen BB, Au C (2012) Catal Commun 28:18–22

    Article  Google Scholar 

  28. Zhang L, Shi LY, Huang L, Zhang JP, Gao RH, Zhang DS (2014) ACS Catal 4:1753–1763

    Article  Google Scholar 

  29. Gao RH, Zhang DS, Maitarad P, Shi LY, Rungrotmongkol T, Li HR, Zhang JP, Cao WG (2013) J Phys Chem C 117:10502–10511

    Article  Google Scholar 

  30. Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, Xiong S (2014) ACS Appl Mater Interfaces 6:24–31

    Article  Google Scholar 

  31. Sun XM, Li YD (2004) Angew Chem Int Ed 43:597–604

    Article  Google Scholar 

  32. Wang LZ, Tang FQ, Ozawa K, Chen ZG, Mukherj A, Zhu YC, Zou J, Cheng HM, Lu GQ (2009) Angew Chem Int Ed 48:7048–7056

    Article  Google Scholar 

  33. Zhou L, Zhao DY, Lou XW (2012) Adv Mater 24:745–748

    Article  Google Scholar 

  34. Li J, Xiong S, Li X, Qian Y (2013) Nanoscale 5:2045–2053

    Article  Google Scholar 

  35. Tang XF, Li JH, Sun L, Hao JM (2010) Appl Catal B: Environ 99:156–162

    Article  Google Scholar 

  36. Shi C, Wang Y, Zhu A, Chen B, Au C (2012) Catal Commun 28:18–26

    Article  Google Scholar 

  37. Aguilera DA, Perez A, Molina R, Moreno S (2011) Appl Catal B: Environ 104:144–152

    Article  Google Scholar 

  38. Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Appl Catal B: Environ 110:71–80

    Article  Google Scholar 

  39. Chen L, Li J, Ge M (2010) Environ Sci Technol 44:9590–9598

    Article  Google Scholar 

  40. Qi GS, Yang RT (2004) Phys Chem B 108:15738–15746

    Article  Google Scholar 

  41. Liu F, He H (2004) Catal Today 153:70–76

    Article  Google Scholar 

  42. Si Z, Weng D, Wu X, Li J, Li G (2010) J Catal 271:43–51

    Article  Google Scholar 

  43. Gu T, Jin R, Liu Y, Liu H, Weng X, Wu Z (2013) Appl Catal B: Environ 129:30–38

    Article  Google Scholar 

  44. Casapu M, Kröcher O, Mehring M, Nachtegaal M, Borca C, Harfouche M, Grolimund D (2010) J Phys Chem C 114:9791

    Article  Google Scholar 

  45. Hadjiivanov KI (2004) Catal Rev 42:71–79

    Article  Google Scholar 

  46. Yao X, Zhang L, Li L, Liu L, Cao Y, Dong X, Gao F, Deng Y, Tang C, Chen Z, Dong L, Chen Y (2014) Appl Catal B: Environ 150-151:315–322

    Article  Google Scholar 

  47. Kijlstra WS, Brands DS, Smit HI, Poels EK, Bliek A (1997) J Catal 171:219–227

    Article  Google Scholar 

  48. Wang LZ, Tang FQ, Ozawa K, Chen ZG, Mukherj A, Zhu YC, Zou J, Cheng HM, Lu GQ (2009) Angew Chem Int Ed 48:7048–7051

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundtion of China (Grant No. 21377061, 81270041), Independent Innovation fund of Tianjin University (2015XRG-0020 and 2016XJ-0006), and by Natural Science Foundation of Tianjin (Grant No. 15JCYBJC48400, 16YFZCSF00300 and 15JCZDJC41200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihui Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Shi, Q. et al. Novel hollow microspheres MnxCo3−xO4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3 . J Sol-Gel Sci Technol 81, 576–585 (2017). https://doi.org/10.1007/s10971-016-4208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4208-8

Keywords

Navigation