Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 623–631 | Cite as

Synthesis and characterization of room temperature sol–gel-assisted transparent tin-doped magnesium oxide nanoparticles’ protective coating

  • Shumaila Islam
  • Noriah Bidin
  • M. Alam Saeed
  • Saira Riaz
  • M. Aizat A. Bakar
  • Shahzad Naseem
  • Khaldoon Naji Abbas
  • Mohd Marsin Sanagi
Original Paper: Sol-gel, hybrids and solution chemistries
  • 252 Downloads

Abstract

Using in-situ sol–gel processing, Sn-doped MgO2 nanofilm has been fabricated by spin-coating technique. Cracked and uneven distribution of particles in the composite can lead to premature failures and material cannot be used as protective coating. Therefore, homogeneous porous nanoparticles with average size 27 nm were obtained without any voids. A stoichiometric ratio of dopant and matrix with low average roughness 2.52 nm of the thin film was observed. Furthermore, the refractive index 1.30 and average film thickness 221 nm at wavelength 632.8 nm has been estimated with optical transparency up to 94 % in the visible range by ultraviolet–visible spectroscopy. Band gap energy of 3.12 eV has also been estimated. The experimental findings show that the prepared nanoparticles can be used as protective coatings.

Graphical Abstract

Open image in new window

Keywords

Sol–gel method Tin-doped magnesium oxide Structural and optical properties 

Notes

Acknowledgments

The authors would like to express their thank to the Government of Malaysia through grant FRGS vote 4F543 for the financial support in this project. Thanks are also due to UTM through RMC for awarding the postdoctoral fellowship to the first author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sreemany M, Sen S (2004) A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films materials. J Chem Phys 83:169–177Google Scholar
  2. 2.
    Ashfold MNR, May PW, Rego CA, Everitt NM (1994) Thin film diamond by chemical vapour deposition methods. Chem Soc Rev 23:21–30CrossRefGoogle Scholar
  3. 3.
    Bhakta R, Thomas R, Hipler F, Bettinger HF, Muller J, Ehrhart P, Devi A (2004) MOCVD of TiO2 thin films and studies on the nature of molecular mechanisms involved in the decomposition of [Ti(OPri)2(tbaoac)2]. J Mater Chem 14:3231–3238CrossRefGoogle Scholar
  4. 4.
    Pederson LR, Singh P, Zhou X-D (2006) Application of vacuum deposition methods to solid oxide fuel cells. Vacuum 80:1066–1083CrossRefGoogle Scholar
  5. 5.
    Klini A, Manousaki A, Anglos D, Fotakis C (2005) Growth of ZnO thin films by ultraviolet pulsed-laser ablation: study of plume dynamics. J Appl Phys 98:12330. 8ppCrossRefGoogle Scholar
  6. 6.
    Kunkel R, Poelsema B, Verheij LK, Comsa G (1990) Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. Phys Rev Lett 65:733–736CrossRefGoogle Scholar
  7. 7.
    Safi I (2000) Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf CoatsTechnol 127:203–219CrossRefGoogle Scholar
  8. 8.
    Wang CW, Chen S-F, Chen G-T (2002) Gamma-ray-irradiation effects on the leakage current and reliability of sputtered TiO2 gate oxide in metal–oxide–semiconductor capacitors. J Appl Phys 91:9198–9203CrossRefGoogle Scholar
  9. 9.
    Alfonso J, Cardenas M, Marco J (2013) Influence of fabrication parameters on crystallization, microstructure, surface composition, and optical behavior of MgO thin films deposited by RF magnetron sputtering. J Supercond Nov Magn 26(7):2463CrossRefGoogle Scholar
  10. 10.
    Sugahara T, Hirose Y, Cong S, Koga H, Jiu J, Nogi M, Nagao S, Suganuma K (2014) Sol–gel-derived high-performance stacked transparent conductive oxide thin films. J Am Ceram Soc 97(10):3238–3243CrossRefGoogle Scholar
  11. 11.
    Islam S, Rahman RA, Othaman Z, Riaz S, Saeed MA, Naseem S (2013) Preparation and characterization of crack-free sol–gel based SiO2–TiO2 hybrid nanoparticle film. J Sol-Gel Sci Technol 68:162–168CrossRefGoogle Scholar
  12. 12.
    Islam S, Rahman RA, Othaman Z, Riaz S, Naseem S (2014) Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J Ind Eng Chem 20:4408–4414CrossRefGoogle Scholar
  13. 13.
    Islam S, Rahman RA, Othaman Z, Riaz S, Naseem S (2015) Synthesis and characterization of multilayered sol–gel based plastic-clad fiber optic pH sensor. J Ind Eng Chem 23:140–144CrossRefGoogle Scholar
  14. 14.
    Rahal A, Benramache RS, Benhaoua B (2013) The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method. J Semicond 34(9):093003-1–093003-5CrossRefGoogle Scholar
  15. 15.
    Punitha K, Sivakumar R, Sanjeeviraja C (2012) Structural and surface morphological studies of magnesium tin oxide thin films. Energy Procedia 15:312–317CrossRefGoogle Scholar
  16. 16.
    Kim HW, Shim SH (2007) Temperature-controlled fabrication of SnO2 nanoparticles via thermal heating of Sn powder. Appl Phys A 88:769CrossRefGoogle Scholar
  17. 17.
    Pan SS, Ye C, Teng XM, Li GH (2007) Angle-dependent photoluminescence of [1 1 0]-oriented nitrogen-doped SnO2 films. J Phys D Appl Phys 40:4771CrossRefGoogle Scholar
  18. 18.
    Azad AM (2001) Novel synthesis of high phase-purity Mg2SnO4 from metallic precursors via powder metallurgy route. Mater Res Bull 36:755–765CrossRefGoogle Scholar
  19. 19.
    Ali SM, Hussain ST, Abu-Bakar S, Muhammad J, Rehman N (2013) Effect of doping on the structural and optical properties of SnO2 thin films fabricated by aerosol assisted chemical vapor deposition. J Phys Conf Ser 439:012013CrossRefGoogle Scholar
  20. 20.
    Du X, Du Y, George SM (2005) In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques. J Vac Sci Technol, A 23:4CrossRefGoogle Scholar
  21. 21.
    Pfaff G (1994) Synthesis of magnesium stannates by thermal decomposition of peroxo-precursors. Thermo Chimica Acta 237:83–90CrossRefGoogle Scholar
  22. 22.
    Huang F, Yuan Z, Zhou Y, Sun J (2004) Synthesis and electrochemical performance of nanosized magnesium tin composite oxides. Mater Chem Phys 83:16CrossRefGoogle Scholar
  23. 23.
    Rashada MM, El-Shallb H (2008) Effect of synthesis conditions on the preparation of MgSnO3 powder via co-precipitation method. Powder Technol 183(2):161–168CrossRefGoogle Scholar
  24. 24.
    Azad AM, Min LJ (2001) Mg2SnO4 ceramics I. Synthesis–processing–microstructure correlation. Ceram Int 27(3):325–334CrossRefGoogle Scholar
  25. 25.
    M.Choudhary, V. N. Mishra, R. Dwivedi, Preparation of nanosized tin oxide powder by sol-gel method, IEEE, 978-1-4673-0455-9 (2012). DOI: 10.1109/SCES.2012.6199083
  26. 26.
    Shi LE, Fang XJ, Zhang ZL, Zhou T, Jiang D, Wu HH, Tang ZX (2012) Preparation of nano-ZnO using sonication method and its antibacterial characteristics. Int J Food Sci Tech 47:1866–1871CrossRefGoogle Scholar
  27. 27.
    Tang ZX, Shi LE (2008) Preparation of nano-MgO using ultrasonic method and its characteristics. Eclét Quím 33:15–20CrossRefGoogle Scholar
  28. 28.
    Tang ZX, Fang XJ, Zhang ZL, Zhou T, Zhang XY, Shi LE (2012) Nanosize MgO as antibacterial agent: preparation and characteristics. Braz J Chem Eng 29(04):775–781CrossRefGoogle Scholar
  29. 29.
    Mazumder N, Bharati A, Saha S, Sen D, Chattopadhyay KK (2012) Effect of Mg doping on the electrical properties of SnO2 nanoparticles. Curr Appl Phys 12:975–982CrossRefGoogle Scholar
  30. 30.
    Suresh S, Arivuoli D (2011) Synthesis and characterization of pb+ doped mgo nanocrystalline particles. Dig J Nanomater Biostruct 6(4):1597–1603Google Scholar
  31. 31.
    Li-ZhaiPeiI, YinII Wan-Yun, WangI Ji-Fen, ChenI Jun, FanI Chuan-Gang, Zhang Qian-Feng (2010) , Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. Mater Res 13(3):339–343CrossRefGoogle Scholar
  32. 32.
    Pusawale SN, Deshmukh PR, Lokhande CD (2011) Chemical synthesis and characterization of hydrous tin oxide (SnO2:H2O) thin films. Bull Mater Sci 34(6):1179–1183CrossRefGoogle Scholar
  33. 33.
    Kumar A, Kumar J (2008) On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J Phys Chem Solids 69:2764–2772CrossRefGoogle Scholar
  34. 34.
    Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39:6153–6171CrossRefGoogle Scholar
  35. 35.
    Islam S, Riaz S, Rahman RA, Naseem S, Othaman Z (2015) Structural and dielectric properties of boron-doped and un-doped mullite thin films. J Sol-Gel Sci Technol 74:368–377CrossRefGoogle Scholar
  36. 36.
    Ali SM, Hussain ST, Muhammad J, Ashrafd M, Farooq A, Imran M, Abu-Bakar S (2013) Influence of magnesium doping on the structural and optical properties of tin (II) oxide thin films deposited by electron beam evaporation. Mater Sci Semicond Process 16:899–904CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shumaila Islam
    • 1
  • Noriah Bidin
    • 1
  • M. Alam Saeed
    • 2
  • Saira Riaz
    • 3
  • M. Aizat A. Bakar
    • 1
  • Shahzad Naseem
    • 3
  • Khaldoon Naji Abbas
    • 1
  • Mohd Marsin Sanagi
    • 4
  1. 1.Laser Centre, IbnuSina Institute for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Faculty of Science, Physics DepartmentUniversiti Teknology MalaysiaSkudaiMalaysia
  3. 3.Centre of Excellence in Solid State PhysicsUniversity of the Punjab, QACLahorePakistan
  4. 4.Faculty of Science, Chemistry DepartmentUniversiti Teknology MalaysiaSkudaiMalaysia

Personalised recommendations