Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 427–435 | Cite as

A rapid and low solvent/silylation agent-consumed synthesis, pore structure and property of silica aerogels from dislodged sludge

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • 310 Downloads

Abstract

Dislodged sludge, a kind of industrial waste, was used as raw material to prepare silica aerogels via ambient pressure drying. The effect of solvent exchange and surface silylation on the pore structure and property of the obtained materials was investigated in detail. If the ethanol and n-hexane exchange decreases to 8 h (two times, each time for 4 h) and 4 h (one time), respectively, and the volume ratio of ethanol/wet gel and n-hexane/wet gel reduces to 2 and 1, respectively, the obtained materials exhibit a desirable pore volume of 3.17 cm3/g, a water contact angle of 152.9° and a low thermal conductivity of 0.030 W/ (m·K). Further decreasing the mole ratio of silylation agent/SiO2 to 0.5 and the silylation time to 6 h results to silica aerogels with a pore volume of 3.44 cm3/g, a water contact angle of 144.5° and a low thermal conductivity of 0.032 W/ (m·K). A rapid synthesis (a total time of 50 h, from wet gel aging to ambient pressure drying) of silica aerogels has been realized and the consumption of solvent/silylation agents has been pronouncedly reduced without sacrificing the thermal insulation property of the obtained materials.

Graphical Abstract

Keywords

Silica aerogels Pore structure Rapid synthesis Dislodged sludge Thermal insulation property 

Notes

Acknowledgments

This research is financially supported by Scientific Research Common Program of the Beijing Municipal Commission of Education (Grant Nos. KZ201410005006, KM201210005012), National Natural Science Foundation of China (Grant Nos. 21171014, 50502002, 51402007), Beijing Natural Science Foundation of China (Grant Nos. 2141001), State Key Laboratory of Solid Waste Reuse for Building Materials (Grant Nos.SWR-2014-010), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, and Beijing University of technology science and technology fund (Grant Nos. ykj-2015-12356).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Churu G, Zupancic B, Mohite D (2015) J Sol-Gel Sci Technol 75:98–123CrossRefGoogle Scholar
  2. 2.
    He S, Bi Y, Zhang Y (2015) J Sol-Gel Sci Technol 74:175–180CrossRefGoogle Scholar
  3. 3.
    Zhang X, Su W, Lin M (2015) J Sol-Gel Sci Technol 74:594–602CrossRefGoogle Scholar
  4. 4.
    Pei X, Zhai W, Zheng W (2015) J Sol-Gel Sci Technol 76:98–109CrossRefGoogle Scholar
  5. 5.
    Slosarczyk A, Barełkowski M, Niemier S (2015) J Sol-Gel Sci Technol 76:227–232CrossRefGoogle Scholar
  6. 6.
    Suzanne K, Estok, Thomas A, Hughes IV (2014) J Sol-Gel Sci Technol 70:371–377CrossRefGoogle Scholar
  7. 7.
    He P, Gao X, Li X-M, Jiang Z-W, Yang Z-H, Wang C-L, Gu Z-Y (2014) Mater Chem Phys 147:65–74CrossRefGoogle Scholar
  8. 8.
    Gutzov S, Danchova N, Karakashev SI, Khristov M, Ivanova J (2014) J Sol-Gel Sci Technol 70:511–516CrossRefGoogle Scholar
  9. 9.
    Estok SK, Thomas A, Hughes IV, Carroll MaryK (2014) J Sol-Gel Sci Technol 70:371–377CrossRefGoogle Scholar
  10. 10.
    Tamon Hajime, Sone Tsuneyuki, Okazaki Morio (1997) J Colloid Interface Sci 188:162–167CrossRefGoogle Scholar
  11. 11.
    Pajonk GM, Venkateswara Rao A, Sawant BM, Parvathy NN (1997) J Non-Cryst Solids 209:40–50CrossRefGoogle Scholar
  12. 12.
    Venkateswara Rao A, Pajonk GM, Haranath D, Wagh PB (1997) Microporous Mater 12:63–69CrossRefGoogle Scholar
  13. 13.
    Gao G-M, Liu D-R, Zou H-F, Zou L-C, Gan S-C (2010) Powder Technol 197:283–287CrossRefGoogle Scholar
  14. 14.
    Bao W-W, Guo F-Y, Zou H-F, Gan S-C, Xu X-C, Zheng K-Y (2013) Powder Technol 249:220–224CrossRefGoogle Scholar
  15. 15.
    Shi Fei, Liu J-X, Song K, Wang Z-Y (2010) J Non-Cryst Solids 356:2241–2246CrossRefGoogle Scholar
  16. 16.
    Nazriati N, Setyawan H, Affandi S, Yuwana M, Winardi S (2014) J Non-Cryst Solids 400:6–11CrossRefGoogle Scholar
  17. 17.
    Tadjarodi A, Haghverdi M, Mohammadi V (2012) Mater Res Bull 47:2584–2589CrossRefGoogle Scholar
  18. 18.
    Tang Qi, Wang Tao (2005) J Supercrit Fluids 35:91–94CrossRefGoogle Scholar
  19. 19.
    Athinarayanan J, Periasamy VS, Alhazmi M (2015) Ceram Int 41:275–281CrossRefGoogle Scholar
  20. 20.
    Lee S, Cha YC, Hwang HJ, Han IS (2007) Mater Lett 61:3130–3133CrossRefGoogle Scholar
  21. 21.
    Dourbash A, Motahari S, Omranpour H (2014) J Non-Cryst Solids 405:135–140CrossRefGoogle Scholar
  22. 22.
    Hwang S-W, Kim T-Y, Hyun S-H (2010) Microporous Mesoporous Mater 130:295–302CrossRefGoogle Scholar
  23. 23.
    Talebi Mazraeh-shahi Z, Shoushtari AM, Abdouss M, Bahramian AR (2013) J Non-Cryst Solids 376:30–37CrossRefGoogle Scholar
  24. 24.
    Chang K-J, Wang Y-Z, Peng K-C, Tsai H-S (2014) J Polym Res 21:338–347CrossRefGoogle Scholar
  25. 25.
    Liu SW, Wei Q, Cui SP, Nie ZR, Du MH, Li QY (2016) J Sol-Gel Sci Technol 78:60–67CrossRefGoogle Scholar
  26. 26.
    Wei Qi, Ding Y-L, Nie Z-R, Liu X-G, Li Q-Y (2014) J Membr Sci 466:114–122CrossRefGoogle Scholar
  27. 27.
    Rao AP, Rao AV, Pajonk GM (2007) Appl Surf Sci 253:6032–6040CrossRefGoogle Scholar
  28. 28.
    Rao AP, Rao AV (2009) J Non-Cryst Solids 355:2260–2271CrossRefGoogle Scholar
  29. 29.
    Parvathy Rao A, Venkateswara Rao A (2008) J Non-Cryst Solids 354:10–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyChaoyang DistrictPR China

Personalised recommendations