Skip to main content

Advertisement

Log in

Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work is a new approach to the study of the structural, mechanical and absorption properties of hybrid organic/inorganic silica-based aerogels. Diethoxydimethylsilane and tetraethoxysilane have been used as precursors. Changes in properties such as specific surface area, porous volume, pore radius, and surface texture and chemistry were researched as a function of the relative organic content. In addition, the absorption properties were tested for different organic liquids. The discrepancy in the absorption mechanisms and the kinetics of pure inorganic and hybrid samples were discussed. It was confirmed that swelling occurs in samples with high organic content, which, in turn, governs the absorption process. Finally, the mechanical behaviour was studied by uniaxial compression. A significant rise of the rupture strain up to 0.45 and a 10-fold decrease in the Young’s modulus to 7.8 MPa were measured in the dry samples by increasing the organic content. The mechanical response of the samples after saturation by the absorption of two reference oily liquids, namely, common motor oil and liquid polydimethylsiloxane, was also compared with the behaviour of dry samples. The presence of liquid within the sample reduced the value of the mechanical parameters in almost all cases. Moreover, the inclusion of organic chains also made the wet aerogels highly deformable. In summary, these first results suggest that tuning the organic ratio of the hybrid aerogels allows the control of not only the structural and mechanical properties but also the absorption properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alava M, Dubé M, Rost M (2004) Imbibition in disordered media. Adv Phys 53:83–175. doi:10.1080/00018730410001687363

    Article  Google Scholar 

  2. Bear J (1988) Dynamics of fluids in porous media. Dover publications INC., New York

    Google Scholar 

  3. Adebajo M, Frost R, Kloprogge J, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10:159–170. doi:10.1023/a:1027484117065

    Article  Google Scholar 

  4. Omidian H, Hashemi S, Sammes P, Meldrum I (1998) A model for the swelling of superabsorbent polymers. Polymer 39:6697–6704. doi:10.1016/s0032-3861(98)00095-0

    Article  Google Scholar 

  5. Fratzl P, Barth F (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448. doi:10.1038/nature08603

    Article  Google Scholar 

  6. Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans A Math Phys Eng Sci 367:1541–1557. doi:10.1098/rsta.2009.0003

    Article  Google Scholar 

  7. Anderson AM, Carroll MK (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi:10.1007/978-1-4419-7589-8_4

  8. Standeker S, Novak Z, Knez Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310:362–368. doi:10.1016/j.jcis.2007.02.021

    Article  Google Scholar 

  9. Anderson A, Carroll M, Green E, Melville J, Bono M (2010) Hydrophobic silica aerogels prepared via rapid supercritical extraction. J Sol-Gel Sci Technol 53:199–207. doi:10.1007/s10971-009-2078-z

    Article  Google Scholar 

  10. Martín L, Ossó J, Ricart S, Roig A, García O, Sastre R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213. doi:10.1039/b712553d

    Article  Google Scholar 

  11. Mackenzie JD, Bescher E (1998) Structures, properties and potential applications of Ormosils. J Sol-gel Sci Technol 13:371–377

    Article  Google Scholar 

  12. De la Rosa-Fox N, Morales-Flórez V, Toledo-Fernández JA, Piñero M, Mendoza-Serna R, Esquivias L (2007) Nanoindentation on hybrid organic-inorganic silica aerogels. J Eur Ceram Soc 11:3311–3316. doi:10.1016/.jeurceramsoc.2007.02.09

    Article  Google Scholar 

  13. Randall J, Meador M, Jana S (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626. doi:10.1021/am200007n

    Article  Google Scholar 

  14. Morales-Flórez V, Rosa-Fox N, Piñero M, Esquivias L (2005) The cluster model: a simulation of the aerogel structure as a hierarchically-ordered arrangement of randomly packed spheres. J Sol-Gel Sci Technol 35:203–210. doi:10.1007/s10971-005-2363-4

    Article  Google Scholar 

  15. Pierre A, Rigacci A (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi:10.1007/978-1-4419-7589-8_4

  16. Choi S, Kwon T, Im H, Moon D, Baek D, Seol M, Duarte J, Choi Y (2011) A Polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556. doi:10.1021/am201352w

    Article  Google Scholar 

  17. Zhao X, Li L, Li B, Zhang J, Wang A (2014) Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. J Mater Chem A 2:18281–18287. doi:10.1039/c4ta04406a

    Article  Google Scholar 

  18. Yoo S, Cohen C, Hui C (2006) Mechanical and swelling properties of PDMS interpenetrating polymer networks. Polymer 47:6226–6235. doi:10.1016/j.polymer.2006.06.035

    Article  Google Scholar 

  19. Haraguchi K, Takehisha T (2002) Nanocomposite hydrogels; a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  Google Scholar 

  20. Rosa-Fox N, Morales-Flórez V, Toledo-Fernández J, Piñero M, Esquivias L, Keiderling U (2008) SANS study of hybrid silica aerogels under “in situ” uniaxial compression. J Sol-Gel Sci Technol 45:245–250. doi:10.1007/s10971-008-1686-3

    Article  Google Scholar 

  21. Babonneau F, Bois L, Maquet J, Livage J (1992) In: Vilminot S, Nass R, Schmidt H (eds), Eurogel’91 - progress in research and development of processes and products from sols and gels. Elsevier Science Publishers, Amsterdam.

  22. Babonneau F (1994) Hybrid siloxane-oxide materials via sol-gel processing: Structural characterization. Polyhedron 13:1123–1130. doi:10.1016/s0277-5387(00)80249-1

    Article  Google Scholar 

  23. Gedde U, Hellebuych A, Hedenqvist M (1996) Sorption of low molar mass silicones in silicone elastomers. Polym Eng Sci 36:2077–2082. doi:10.1002/pen.10603

    Article  Google Scholar 

  24. Morales-Flórez V, Toledo-Fernandez JA, De la Rosa-Fox N, Piñero M, Esquivias L (2008) Percolation of the organic phase in hybrid organic–inorganic aerogels. J Sol-Gel Sci Technol 50:170–175. doi:10.1007/s10971-008-1874-1

    Article  Google Scholar 

  25. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surface A 173:1–38. doi:10.1016/S0927-7757(00)00556-2

    Article  Google Scholar 

  26. Portaccio M, Della Ventura B, Mita D, Manolova N, Stoilova O, Rashkov I, Lepore M (2011) FT-IR microscopy characterization of sol–gel layers prior and after glucose oxidase immobilization for biosensing applications. J Sol-Gel Sci Technol 57:204–211. doi:10.1007/s10971-010-2343-1

    Article  Google Scholar 

  27. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919:140–145. doi:10.1016/j.molstruc.2008.08.025

    Article  Google Scholar 

  28. Wu W, Chuang C, Lin J (2000) Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J Phys Chem B 104:8719–8724. doi:10.1021/jp0017184

    Article  Google Scholar 

  29. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater 13:3169–3183. doi:10.1021/cm0101069

    Article  Google Scholar 

  30. Morales-Flórez V, Piñero M, de la Rosa-Fox N, Esquivias L, Anta J, Primera J (2008) The cluster model: A hierarchically-ordered assemblage of random-packing spheres for modelling microstructure of porous materials. J Non-Cryst Solids 354:193–198. doi:10.1016/j.jnoncrysol.2007.07.061

    Article  Google Scholar 

  31. Morales-Flórez V, Rosa-Fox N, Piñero M, Esquivias L (2005) The cluster model: a simulation of the aerogel structure as a hierarchically-ordered arrangement of randomly packed spheres. J Sol-Gel Sci Technol 35:203–210. doi:10.1007/s10971-005-2363-4

    Article  Google Scholar 

  32. Gruener S, Hermes H, Schillinger B, Egelhaaf S, Huber P (2015) Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloid Surface A. doi:10.1016/j.colsurfa.2015.09.055

  33. Mosquera M, Rivas T, Prieto B, Silva B (2000) Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J Colloid Interface Sci 222:41–45. doi:10.1006/jcis.1999.6612

    Article  Google Scholar 

  34. Zhang Z, Gorman BP, Dong H, Orozco-Teran RA, Mueller DW, Reidy RF (2003) Investigation of polymerization and cyclization of dimethyldiethoxysilane by 29Si NMR and FTIR. J Sol-Gel Sci Technol 28:159–165. doi:10.1023/A:1026098729993

    Article  Google Scholar 

  35. Leventis N, Lu H (2011) In: Aegerter MA, Leventis N, Koebel MM (eds), Aerogels handbook, advances in sol-gel derived materials and technologies, Springer-Verlag New York. doi: 10.1007/978-1-4419-7589-8_13

  36. Piñero M, Morales-Florez V, De la Rosa-Fox N, Esquivias L (2005) Propiedades mecánicas de aerogeles híbridos de sílice. Bol Soc Esp Cerám V 44:291–203

    Article  Google Scholar 

  37. De la Rosa-Fox N, Toledo-Fernández JA, Morales-Florez V, Piñero M, Esquivias L (2010) Creep and stress relaxation of hybrid organic-inorganic aerogels. Key Eng Mater 423:167–172. doi:10.4028/www.scientific.net/KEM.423.167

    Article  Google Scholar 

  38. Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2001) Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different PDMS contents. J Sol-Gel Sci Technol 21:75–81. doi:10.1023/a:1011261617377

    Article  Google Scholar 

  39. Esquivias L, Morales-Flórez V, Piñero M, de la Rosa-Fox N (2005) Structure of bioactive mixed polymer/colloid aerogels. J Non-Cryst Solids 351:3347–3355. doi:10.1016/j.jnoncrysol.2005.08.007

    Article  Google Scholar 

  40. Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2007) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci: Mater Med 19:2207–2213. doi:10.1007/s10856-007-3312-2

    Google Scholar 

  41. Toledo Fernández J, Mendoza-Serna R, Santos A, Piñero M, Rosa-Fox N, Esquivias L (2008) Improvement of the bioactivity of organic–inorganic hybrid aerogels/wollastonite composites with TiO2. J Sol-Gel Sci Technol 45:261–267. doi:10.1007/s10971-007-1674-z

    Article  Google Scholar 

Download references

Acknowledegments

V.M-F. thanks the post-doctoral grant from the “V Plan Propio de Investigación” from the University of Seville. In addition, contributions and help supplied by the ImageJ software package developers, from the National Institutes of Health of the US (http://imagej.nih.gov/ij), and from the webmasters and owners of www.citethisforme.com have also to be recognized. Technical staff of the CITIUS (Universidad de Sevilla) is also acknowledged for their help in the characterization of the samples and the funding from the “Proyecto de Excelencia, P09-TEP-5463” of the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Piñero.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Florez, V., Piñero, M., Braza, V. et al. Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels. J Sol-Gel Sci Technol 81, 600–610 (2017). https://doi.org/10.1007/s10971-016-4203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4203-0

Keywords

Navigation