Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 452–467 | Cite as

Tuning the morphology of functionalized silica using amphiphilic organosilanes

  • Romain Besnard
  • Guilhem Arrachart
  • Julien Cambedouzou
  • Stéphane Pellet-Rostaing
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


The co-condensation of tetraethoxysilane and an amphiphilic organosilane precursor containing an ammonium part is investigated in presence of different counter-ions. We highlight the morphological versatility offered by such “one pot” synthesis, resulting of the combinatory effects of the addition of tetraethoxysilane and of the nature of the counter-ion involved in the sol-gel process. Indeed, the interactions at the interface governed by the ammonium species affect the shape of the aggregates, making of the counter-ion a critical morphological parameter. The morphology of the particles is also closely linked to the homogeneity of the system. Thereby, using the immiscibility of the tetraethoxysilane/water mixture, we showed that it is possible to get macroporous, blackberry-like or cerasome materials. Oppositely, the use of tetrahydrofuran able to solubilize all the systems leads to monodisperse nanoparticles whose size can be modulated as a function of the involved counter ion.

Graphical Abstract

Open image in new window


Organosilane Sol-gel Nanostructures Morphologies 



The authors acknowledge J. Ravaux for assistance on SEM and Wet-STEM experiments, C. Rey and A. Jonchère for their technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10971_2016_4202_MOESM1_ESM.docx (2.6 mb)
Supplementary Information


  1. 1.
    Rurack K, Martinez-Manez R (2010) The Supramolecular chemistry of organic–inorganic hybrid materials. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Rosenholm JM, Linden M (2007) Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem Mater 19(20):5023–5034CrossRefGoogle Scholar
  3. 3.
    Wang XG, Lin KSK, Chan JCC, Cheng S (2004) Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-pot synthesis. Chem Commun 23:2762–2763CrossRefGoogle Scholar
  4. 4.
    Macquarrie DJ, Jackson DB (1997) Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica. Chem Commun 18:1781–1782CrossRefGoogle Scholar
  5. 5.
    Lambert S, Tran KY, Arrachart G, Noville F, Henrist C, Bied C, Moreau JJE, Wong Chi Man M, Heinrichs B (2008) Tailor-made morphologies for Pd/SiO2 catalysts through sol-gel process with various silylated ligands. Microporous Mesoporous Mater 115(3):609–617CrossRefGoogle Scholar
  6. 6.
    Besnard R, Cambedouzou J, Arrachart G, Le Goff XF, Pellet-Rostaing S (2015) Organosilica-metallic sandwich materials as precursors for palladium and platinum nanoparticle synthesis. RSC Adv 5(95):77619–77628CrossRefGoogle Scholar
  7. 7.
    Fryxell GE, Liu J, Hauser TA, Nie ZM, Ferris KF, Mattigod S, Gong ML, Hallen RT (1999) Design and synthesis of selective mesoporous anion traps. Chem Mater 11(8):2148–2154CrossRefGoogle Scholar
  8. 8.
    Yokoi T, Yoshitake H, Tatsumi T (2004) Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. J Mater Chem 14(6):951–957CrossRefGoogle Scholar
  9. 9.
    Yoshitake H, Koiso E, Horie H, Yoshimura H (2005) Polyamine-functionalized mesoporous silicas: preparation, structural analysis and oxyanion adsorption. Microporous Mesoporous Mater 85(1-2):183–194CrossRefGoogle Scholar
  10. 10.
    Reynhardt JPK, Alper H (2003) Hydroesterification reactions with palladium-complexed PAMAM dendrimers immobilized on silica. J Org Chem 68(22):8353–8360CrossRefGoogle Scholar
  11. 11.
    Kim CO, Cho SJ, Park JW (2003) Hyperbranching polymerization of aziridine on silica solid substrates leading to a surface of highly dense reactive amine groups. J Colloid Interface Sci 260(2):374–378CrossRefGoogle Scholar
  12. 12.
    Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic−organic hybrid mesoporous materials. Chem Mater 11(11):3285–3295CrossRefGoogle Scholar
  13. 13.
    Arrachart G, Carcel C, Trens P, Moreau JJE, Wong Chi Man M (2009) Silylated melamine and cyanuric acid as precursors for imprinted and hybrid silica materials with molecular recognition properties. Chem Eur J 15(25):6279–6288CrossRefGoogle Scholar
  14. 14.
    Arrachart G, Bendjerriou A, Carcel C, Trens P, Moreau JJE, Wong Chi Man M (2010) Influence of the alkyl linker in the structuring of bridged silsesquioxanes obtained by self-recognition properties. New J Chem 34(7):1436–1440CrossRefGoogle Scholar
  15. 15.
    Arrachart G, Creff G, Wadepohl H, Blanc C, Bonhomme C, Babonneau F, Alonso B, Bantignies J-L, Carcel C, Moreau JJE, Dieudonné P, Sauvajol J-L, Massiot D, Wong Chi Man M (2009) Nanostructuring of hybrid silicas through self-recognition process. Chem Eur J 15(20):5002–5005CrossRefGoogle Scholar
  16. 16.
    Shimojima A, Sugahara K, Kuroda K (2003) Direct formation of mesostructured silica-based hybrids from novel siloxane oligomers with long alkyl chains. Angew Chem Int Ed 42:4057–4060CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Ariga K, Okabe A, Aida T (2004) A condensable amphiphile with a cleavable tail as a “Lizard” template for the sol−gel synthesis of functionalized mesoporous silica. J Am Chem Soc 126(4):988–989CrossRefGoogle Scholar
  18. 18.
    Voss R, Thomas A, Antonietti M, Ozin G (2005) A synthesis and characterization of highly amine functionalized mesoporous organosilicas by an “‘all-in-one’” approach. J Mater Chem 4010−4014.Google Scholar
  19. 19.
    Ruiz-Hitzky E, Letaïef S, Prévot V (2002) Novel organic−inorganic mesophases: self-templating synthesis and intratubular swelling. Adv Mater 14:439–443CrossRefGoogle Scholar
  20. 20.
    Alauzun J, Besson E, Mehdi A, Reye C, Corriu RJP (2008) Reversible covalent chemistry of CO2: an opportunity for nano-structured hybrid organic–inorganic materials. Chem Mater 20(2):503–513CrossRefGoogle Scholar
  21. 21.
    Mouawia R, Mehdi A, Reye C, Corriu RJP (2008) From simple molecules to highly functionalised lamellar materials. J Mater Chem 18(17):2028–2035CrossRefGoogle Scholar
  22. 22.
    Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S (2016) Tuning the nanostructure of highly functionalized silica using amphiphilic organosilanes: curvature agent effects. Langmuir 32(18):4624–4634CrossRefGoogle Scholar
  23. 23.
    Besnard R, Cambedouzou J, Arrachart G, Diat O, Pellet-Rostaing S (2013) Self-assembly of condensable “Bola-Amphiphiles” in water/tetraethoxysilane mixtures for the elaboration of mesostructured hybrid materials. Langmuir 29(33):10368–10375CrossRefGoogle Scholar
  24. 24.
    Li Y, Beck R, Huang T, Choi MC, Divinagracia M (2008) Scatterless hybrid metal–single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction. J Appl Crystallogr 41(6):1134–1139CrossRefGoogle Scholar
  25. 25.
    Pichon BP, Wong Chi Man M, Bied C, Moreau JJE (2005) A simple access to ω-aminoalkyltrialkoxysilanes: tunable linkers for self-organised organosilicas. J Organomet Chem. 1126–1130.Google Scholar
  26. 26.
    Alauzun J, Mehdi A, Reye C, Corriu RJP (2005) CO2 as a supramolecular assembly agent: a route for lamellar materials with a high content of amine groups. J Am Chem Soc 127(32):11204–11205CrossRefGoogle Scholar
  27. 27.
    Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S (2015) Structural study of hybrid silica bilayers from “bola-Amphiphile” organosilane precursors: catalytic and thermal effects. RSC Adv 5(71):57521–57531CrossRefGoogle Scholar
  28. 28.
    Karlsson S, Friman R, Björkqvist M, Lindström B, Backlund S (2001) Phase behavior and characterization of the system acetic acid−dodecylamine−water. Langmuir 17(12):3573–3578CrossRefGoogle Scholar
  29. 29.
    Yang X, Zhao N, Zhou Q, Wang Z, Duan C, Cai C, Zhang X, Xu J (2012) Facile preparation of hollow amino-functionalized organosilica microspheres by a template-free method. J Mater Chem 22(34):18010–18017CrossRefGoogle Scholar
  30. 30.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743CrossRefGoogle Scholar
  31. 31.
    Bacsik Z, Ahlsten N, Ziadi A, Zhao G, Garcia-Bennett AE, Martín-Matute B, Hedin N (2011) Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with N-propylamine. Langmuir 27(17):11118–11128CrossRefGoogle Scholar
  32. 32.
    Duran A, Serna C, Fornes V, Fernandez Navarro JM (1986) Structural considerations about SiO2 glasses prepared by sol-gel. J Non Cryst Solids 82(1–3):69–77CrossRefGoogle Scholar
  33. 33.
    Sugahara Y, Inoue T, Kuroda K (1997) 29 Si NMR study on co-hydrolysis processes in Si(OEt)4–RSi(OEt)3–EtOH–water–HCl systems (R=Me, Ph): effect of R groups. J Mater Chem 7(1):53–59CrossRefGoogle Scholar
  34. 34.
    Corriu RJP, Nguyên T (2008) Chimie Moléculaire, Sol-Gel et Nanomateriaux, Les Editions de l’Ecole Polytechnique, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut de Chimie Séparative de Marcoule, UMR 5257 CEA / CNRS / UM / ENSCMBagnols-sur-CèzeFrance

Personalised recommendations