Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 423–426 | Cite as

Low-temperature synthesis of zeolite from porous silica by hot-water and steam treatment

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Abstract

Chabazite (CHA) zeolite was synthesized at 333 K by soaking porous silica powder, derived from Si alkoxide, in a basic solution. In addition, Linde Type A (LTA) zeolite was synthesized at the same temperature via the steam treatment of porous silica powder. Prior to the above treatment, Na, Al, and a structure-directing agent were impregnated into the silica powder. As a result of soaking, porous silica was almost completely converted to CHA, while steam treatment resulted in a composite material composed of LTA and silica. This result suggested that hydrothermal conditions above the boiling point of water is not necessarily required for the synthesis of zeolite from silica.

Graphical Abstract

Open image in new window

Keywords

Low-temperature zeolite synthesis Hot-water treatment Steam treatment Crystal growth Macroporous silica Alkoxide method 

Notes

Acknowledgement

This study was supported by JSPS KAKENHI Grant Number 22760578.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48. doi: 10.1016/S1387-1811(98)00319-9 CrossRefGoogle Scholar
  2. 2.
    Chen JQ, Bozzano A, Glover B et al. (2005) Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 106:103–107. doi: 10.1016/j.cattod.2005.07.178 CrossRefGoogle Scholar
  3. 3.
    Li S, Falconer JL, Noble RD (2006) Improved SAPO-34 membranes for CO2/CH4 separations. Adv Mater 18:2601–2603. doi: 10.1002/adma.200601147 CrossRefGoogle Scholar
  4. 4.
    Carreon MA, Li S, Falconer JL, Noble RD (2008) Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J Am Chem Soc 130:5412–5413. doi: 10.1021/ja801294f CrossRefGoogle Scholar
  5. 5.
    Hasegawa Y, Hotta H, Sato K et al. (2010) Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution. J Membr Sci 347:193–196. doi: 10.1016/j.memsci.2009.10.024 CrossRefGoogle Scholar
  6. 6.
    Liu B, Zheng Y, Hu N et al. (2014) Synthesis of low-silica CHA zeolite chabazite in fluoride media without organic structural directing agents and zeolites. Microporous Mesoporous Mater 196:270–276. doi: 10.1016/j.micromeso.2014.05.019 CrossRefGoogle Scholar
  7. 7.
    Miyamoto M, Nakatani T, Fujioka Y, Yogo K (2015) Verified synthesis of pure silica CHA-type zeolite in fluoride media. Microporous Mesoporous Mater 206:67–74. doi: 10.1016/j.micromeso.2014.12.012 CrossRefGoogle Scholar
  8. 8.
    Goto I, Itakura M, Shibata S et al. (2012) Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous Mesoporous Mater 158:117–122. doi: 10.1016/j.micromeso.2012.03.032 CrossRefGoogle Scholar
  9. 9.
    Itakura M, Goto I, Takahashi A et al. (2011) Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous Mesoporous Mater 144:91–96. doi: 10.1016/j.micromeso.2011.03.041 CrossRefGoogle Scholar
  10. 10.
    Ackley M (2003) Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater 61:25–42. doi: 10.1016/S1387-1811(03)00353-6 CrossRefGoogle Scholar
  11. 11.
    Granato MA, Vlugt TJH, Rodrigues AE (2007) Molecular simulation of propane−propylene binary adsorption equilibrium in zeolite 4A. Ind Eng Chem Res 46:321–328. doi: 10.1021/ie0605940 CrossRefGoogle Scholar
  12. 12.
    Morigami Y, Kondo M, Abe J et al. (2001) The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol 25:251–260. doi: 10.1016/S1383-5866(01)00109-5 CrossRefGoogle Scholar
  13. 13.
    Zhu W, Gora L, Van Den Berg a. WC et al. (2005) Water vapour separation from permanent gases by a zeolite-4A membrane. J Membr Sci 253:57–66. doi: 10.1016/j.memsci.2004.12.039 CrossRefGoogle Scholar
  14. 14.
    Zhang X, Tang D, Jiang G (2013) Synthesis of zeolite NaA at room temperature: the effect of synthesis parameters on crystal size and its size distribution. Adv Powder Technol 24:689–696. doi: 10.1016/j.apt.2012.12.010 CrossRefGoogle Scholar
  15. 15.
    Sharma P, Han MH, Cho CH (2014) An emulsion-based droplet hydrothermal synthesis method for the production of uniform sized zeolite nanocrystals. J Colloid Interface Sci 422:45–53. doi: 10.1016/j.jcis.2014.02.013 CrossRefGoogle Scholar
  16. 16.
    Kazemimoghadam M, Mohammadi T (2006) Preparation of NaA zeolite membranes for separation of water/UDMH mixtures. Sep Purif Technol 47:173–178. doi: 10.1016/j.seppur.2005.06.013 CrossRefGoogle Scholar
  17. 17.
    Takahashi R, Sato S, Sodesawa T et al. (2006) Synthesis of monolithic zeolites with macropores. J Ceram Soc Japan 114:421–424CrossRefGoogle Scholar
  18. 18.
    Tokudome Y, Nakanishi K, Kosaka S et al. (2010) Synthesis of high-silica and low-silica zeolite monoliths with trimodal pores. Microporous Mesoporous Mater 132:538–542. doi: 10.1016/j.micromeso.2010.04.005 CrossRefGoogle Scholar
  19. 19.
    Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase separation in silica sol-gel system containing poly(ethylene oxide). I. Phase relation and gel morphology. Bull Chem Soc Jpn 67:1327–1335. doi: 10.1246/bcsj.67.1327 CrossRefGoogle Scholar
  20. 20.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112. doi: 10.1023/A:1009627216939 CrossRefGoogle Scholar
  21. 21.
    Higuchi T, Yano Y, Aita T et al. (2013) Phase-field simulation of polymerization-induced phase separation: I. effect of reaction rate and coexisting polymer. J Chem Eng Japan 46:709–715. doi: 10.1252/jcej.13we011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations