Skip to main content
Log in

A facile synthesis for magnetic ferberite nanostructured material

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Iron-tungsten oxide nanospinel have been prepared by two methods: microwave combustion method and Pechini method. The W-Fe bimetallic ferberite was successfully synthesized by microwave-assisted techniques. The resultant magnetic nanocomposites were characterized by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, energy-dispersive X-ray, transmission electron microscopy, nitrogen adsorption, and magnetic properties measurement system. The prepared ferberite nanoparticles (50–65 nm) using microwave combustion method were pure monoclinic ferberite. The ferberite nanoparticles showed ferrimagnetic hysteresis loop with values of saturation magnetization and coercivity of 4.829 A.m2/Kg and 0.0312 T, successively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cm-Dresdner H, Escobar C (1968) Zeitschrift für Kristallographie. Crystalline Materials 127:61–72

    Google Scholar 

  2. Hu W, Zhao Y, Liu Z, Dunnill CW, Gregory DH, Zhu Y (2008) Nanostructural evolution: from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers. Chem Mater 20:5657–5665

    Article  Google Scholar 

  3. Sakharkar MV, Sharma J, Ray RK, Biswas AK (1997) Characterization of synthesized wolframite minerals and their leach residues. Hydrometallurgy 44:65–69

    Article  Google Scholar 

  4. Buhl J-C, Willgallis A (1984) Kinetics and mechanism of Hübnerite (MnWO4) and Ferberite (FeWO4) crystallization under hydrothermal conditions. Zeitschrift für Naturforschung A - A Journal of Physical Sciences 39:963–965

    Google Scholar 

  5. Buhl J-C, Willgallis A (1985) On the hydrothermal synthesis of wolframite. Chem Geol 48:93–102

    Article  Google Scholar 

  6. Buhl J-C, Willgallis A (1986) The low-temperature crystallization of (Fe,Mn)WO4 (wolframite), (Zn,Fe)WO4 (sanmartinite) and (Zn,Mn)WO4 solid solutions under hydrothermal conditions. Chem Geol 56:271–279

    Article  Google Scholar 

  7. Kloprogge JT, Weier ML, Duong LV, Frost RL (2004) Microwave-assisted synthesis and characterisation of divalent metal tungstate nanocrystalline minerals: ferberite, hübnerite, sanmartinite, scheelite and stolzite. Mater Chem Phys 88:438–443

    Article  Google Scholar 

  8. Yu S, Liu B, Mo M, Huang J, Liu X, Qian Y (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647

    Article  Google Scholar 

  9. Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2011) Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. CrystEngComm 13:5744–5750

    Article  Google Scholar 

  10. Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S (2014) Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6:12366–12370

    Article  Google Scholar 

  11. He G-L, Chen M-J, Liu Y-Q, Li X, Liu Y-J, Xu Y-H (2015) Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Appl Surf Sci 351:474–479

    Article  Google Scholar 

  12. Laishram K, Mann R, Malhan N (2012) A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders. Ceramics International 38:1703–1706

    Article  Google Scholar 

  13. Zaki T, Kabel KI, Hassan H (2012) Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method. Ceram Int 38:2021–2026

    Article  Google Scholar 

  14. Zaki T, Kabel KI, Hassan H (2012) Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area. Ceram Int 38:4861–4866

    Article  Google Scholar 

  15. Yu S-H, Liu B, Mo M-S, Huang J-H, Liu X-M, Qian Y-T (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647

    Article  Google Scholar 

  16. Yu F, Schanz U, Schmidbauer E (1993) Single crystal growth of FeWO4 and CuWO4. J Cryst Growth 132:606–605

    Article  Google Scholar 

  17. Zhou Y-X, Yan H-B, Zang Q, Gong J-Y, Liu S-J, Yu S-H (2009) Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg Chem 48:1082–1090

    Article  Google Scholar 

  18. Almeida MAP, Cavalcante LS, Morilla-Santos C, Lisboa Filho PN, Beltrán A, Andrés J, Gracia L, Longo E (2012) Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Mater Charact 73:124–129

    Article  Google Scholar 

  19. Salamanca M, Licea YE, Echavarría A, Faro Jr. AC, Palacio LA (2009) Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane. Phys Chem Chem Phys 11:9583–9591

    Article  Google Scholar 

  20. Miller, FA (2003) Infrared Spectra of Inorganic Materials, Chapter 11, course notes on the interpretation of infrared and Raman spectra. In: Mayo, DW, Miller, FA, Hannah, RW (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, USA, pp 297–354.

  21. Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 82:1059–1073

    Article  Google Scholar 

  22. Guillen R, Regnard JR (1985) Magnetic properties of natural and synthetic wolframites FexMn1-xWO4. Phys Chem Miner 12:246–254

    Article  Google Scholar 

  23. Rajagopal S, Bekenev VL, Nataraj D, Mangalaraj D, Yu. Khyzhun O (2010) Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J Alloys Compd 496:61–68

    Article  Google Scholar 

  24. Angadi VJ, Rudraswamy B, Sadhana K, Praveena K (2016) Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J Magn Magn Mater 409:111–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Zaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Maghrabi, H.H., Zaki, T. A facile synthesis for magnetic ferberite nanostructured material. J Sol-Gel Sci Technol 81, 436–441 (2017). https://doi.org/10.1007/s10971-016-4195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4195-9

Keywords

Navigation