Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 436–441 | Cite as

A facile synthesis for magnetic ferberite nanostructured material

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Iron-tungsten oxide nanospinel have been prepared by two methods: microwave combustion method and Pechini method. The W-Fe bimetallic ferberite was successfully synthesized by microwave-assisted techniques. The resultant magnetic nanocomposites were characterized by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, energy-dispersive X-ray, transmission electron microscopy, nitrogen adsorption, and magnetic properties measurement system. The prepared ferberite nanoparticles (50–65 nm) using microwave combustion method were pure monoclinic ferberite. The ferberite nanoparticles showed ferrimagnetic hysteresis loop with values of saturation magnetization and coercivity of 4.829 A.m2/Kg and 0.0312 T, successively.

Graphical Abstract

Open image in new window


Magnetic ferberite Microwave-assisted synthesis Wolframite structure Pechini synthesis FeWO4 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2016_4195_MOESM1_ESM.doc (146 kb)
Supplementary Information


  1. 1.
    Cm-Dresdner H, Escobar C (1968) Zeitschrift für Kristallographie. Crystalline Materials 127:61–72Google Scholar
  2. 2.
    Hu W, Zhao Y, Liu Z, Dunnill CW, Gregory DH, Zhu Y (2008) Nanostructural evolution: from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers. Chem Mater 20:5657–5665CrossRefGoogle Scholar
  3. 3.
    Sakharkar MV, Sharma J, Ray RK, Biswas AK (1997) Characterization of synthesized wolframite minerals and their leach residues. Hydrometallurgy 44:65–69CrossRefGoogle Scholar
  4. 4.
    Buhl J-C, Willgallis A (1984) Kinetics and mechanism of Hübnerite (MnWO4) and Ferberite (FeWO4) crystallization under hydrothermal conditions. Zeitschrift für Naturforschung A - A Journal of Physical Sciences 39:963–965Google Scholar
  5. 5.
    Buhl J-C, Willgallis A (1985) On the hydrothermal synthesis of wolframite. Chem Geol 48:93–102CrossRefGoogle Scholar
  6. 6.
    Buhl J-C, Willgallis A (1986) The low-temperature crystallization of (Fe,Mn)WO4 (wolframite), (Zn,Fe)WO4 (sanmartinite) and (Zn,Mn)WO4 solid solutions under hydrothermal conditions. Chem Geol 56:271–279CrossRefGoogle Scholar
  7. 7.
    Kloprogge JT, Weier ML, Duong LV, Frost RL (2004) Microwave-assisted synthesis and characterisation of divalent metal tungstate nanocrystalline minerals: ferberite, hübnerite, sanmartinite, scheelite and stolzite. Mater Chem Phys 88:438–443CrossRefGoogle Scholar
  8. 8.
    Yu S, Liu B, Mo M, Huang J, Liu X, Qian Y (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647CrossRefGoogle Scholar
  9. 9.
    Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2011) Controlled synthesis, growth mechanism and optical properties of FeWO4 hierarchical microstructures. CrystEngComm 13:5744–5750CrossRefGoogle Scholar
  10. 10.
    Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S (2014) Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 6:12366–12370CrossRefGoogle Scholar
  11. 11.
    He G-L, Chen M-J, Liu Y-Q, Li X, Liu Y-J, Xu Y-H (2015) Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Appl Surf Sci 351:474–479CrossRefGoogle Scholar
  12. 12.
    Laishram K, Mann R, Malhan N (2012) A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders. Ceramics International 38:1703–1706CrossRefGoogle Scholar
  13. 13.
    Zaki T, Kabel KI, Hassan H (2012) Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method. Ceram Int 38:2021–2026CrossRefGoogle Scholar
  14. 14.
    Zaki T, Kabel KI, Hassan H (2012) Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area. Ceram Int 38:4861–4866CrossRefGoogle Scholar
  15. 15.
    Yu S-H, Liu B, Mo M-S, Huang J-H, Liu X-M, Qian Y-T (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647CrossRefGoogle Scholar
  16. 16.
    Yu F, Schanz U, Schmidbauer E (1993) Single crystal growth of FeWO4 and CuWO4. J Cryst Growth 132:606–605CrossRefGoogle Scholar
  17. 17.
    Zhou Y-X, Yan H-B, Zang Q, Gong J-Y, Liu S-J, Yu S-H (2009) Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg Chem 48:1082–1090CrossRefGoogle Scholar
  18. 18.
    Almeida MAP, Cavalcante LS, Morilla-Santos C, Lisboa Filho PN, Beltrán A, Andrés J, Gracia L, Longo E (2012) Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Mater Charact 73:124–129CrossRefGoogle Scholar
  19. 19.
    Salamanca M, Licea YE, Echavarría A, Faro Jr. AC, Palacio LA (2009) Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane. Phys Chem Chem Phys 11:9583–9591CrossRefGoogle Scholar
  20. 20.
    Miller, FA (2003) Infrared Spectra of Inorganic Materials, Chapter 11, course notes on the interpretation of infrared and Raman spectra. In: Mayo, DW, Miller, FA, Hannah, RW (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, USA, pp 297–354.Google Scholar
  21. 21.
    Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik 82:1059–1073CrossRefGoogle Scholar
  22. 22.
    Guillen R, Regnard JR (1985) Magnetic properties of natural and synthetic wolframites FexMn1-xWO4. Phys Chem Miner 12:246–254CrossRefGoogle Scholar
  23. 23.
    Rajagopal S, Bekenev VL, Nataraj D, Mangalaraj D, Yu. Khyzhun O (2010) Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FP-LAPW calculations and X-ray spectroscopy studies. J Alloys Compd 496:61–68CrossRefGoogle Scholar
  24. 24.
    Angadi VJ, Rudraswamy B, Sadhana K, Praveena K (2016) Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J Magn Magn Mater 409:111–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Catalysis Department, Refining DivisionEgyptian Petroleum Research InstituteCairoEgypt
  2. 2.EPRI Nanotechnology CenterEgyptian Petroleum Research InstituteCairoEgypt

Personalised recommendations