Advertisement

Journal of Sol-Gel Science and Technology

, Volume 80, Issue 3, pp 867–872 | Cite as

The performance of CdS quantum dot sensitized ZnO nanorod-based solar cell

  • D. Vinoth Pandi
  • N. Muthukumarasamy
  • S. Agilan
  • M. R. Venkat Raman
  • Y. Akila
  • Dhayalan Velauthapillai
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Abstract

ZnO nanorods (NRs) have been grown by sol–gel dip-coating method on FTO glass plates. The CdS quantum dots (QDs) were deposited on the as-prepared ZnO NRs by successive ionic layer adsorption and reaction method. The structural characteristics of the ZnO NRs, CdS QD and CdS QD-sensitized ZnO NRs films have been studied using X-ray diffraction method. ZnO NRs exhibit hexagonal structure. CdS QD had a size of 2 nm. The FESEM image showed the presence of CdS quantum dots on the ZnO NRs. From the optical studies, the optical band gap energy of ZnO thin film was found to be 3.26 eV and the band gap energy of CdS quantum dot was observed to be 2.1 eV. The optical absorption edge was found at 370 nm for ZnO NRs and at 460 nm for the CdS QD. The PL spectra of the prepared ZnO NRs and CdS QDs sample exhibit a strong emission peak at 395 and 688 nm. Solar cells have been fabricated using the CdS quantum dot sensitized ZnO nanorods, and the efficiency of the cell was 1.3 %.

Graphical Abstract

Keywords

Sol–gel method ZnO nanorods CdS quantum dot Solar cell J–V characteristics 

Notes

Acknowledgments

The authors thank CSIR (Council of Scientific and Industrial Research), India for providing financial support to carry out this research work.

References

  1. 1.
    Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T (2004) J Cryst Growth 260(1):166–170CrossRefGoogle Scholar
  2. 2.
    Yang TL, Zhang DH, Ma J, Ma HL, Chen Y (1998) Thin Solid Films 326(1):60–62CrossRefGoogle Scholar
  3. 3.
    Sang B, Yamada A, Konagai M (1998) Jpn J Appl Phys 37(2B):L206CrossRefGoogle Scholar
  4. 4.
    Cordaro JF, Shim Y, May JE (1986) J Appl Phys 60(12):4186–4190CrossRefGoogle Scholar
  5. 5.
    Verardi P, Nastase N, Gherasim C, Ghica C, Dinescu M, Dinu R, Flueraru C (1999) J Cryst Growth 197(3):523–528CrossRefGoogle Scholar
  6. 6.
    Hingorani S, Pillai V, Kumar P, Multani MS, Shah DO (1993) Mater Res Bull 28(12):1303–1310CrossRefGoogle Scholar
  7. 7.
    Raja M, Muthukumarasamy N, Velauthapillai D, Balasundaraprabhu R, Agilan S, Senthil TS (2014) Sol Energy 106:129–135CrossRefGoogle Scholar
  8. 8.
    Senthil TS, Kim A-Y, Muthukumarasamy N, Kang M (2013) J Nanopart Res 15(9):1–9CrossRefGoogle Scholar
  9. 9.
    Jiaqiang X, Yuping C, Daoyong C, Jianian S (2006) Sens Actuators B Chem 113(1):526–531CrossRefGoogle Scholar
  10. 10.
    Howdyshell M (2007) Structure of ZnO nanorods using X-ray diffraction. No. SLAC-TN-07-024Google Scholar
  11. 11.
    Water W, Chen S-E (2009) Sens Actuators B Chem 136(2):371–375CrossRefGoogle Scholar
  12. 12.
    Huang N, Zhu MW, Gao LJ, Gong J, Sun C, Jiang X (2011) Appl Surf Sci 257(14):6026–6033CrossRefGoogle Scholar
  13. 13.
    Lee JP, Yoo B, Suresh T, Kang MS, Vital R, Kim KJ (2009) Electrochim Acta 54:4365CrossRefGoogle Scholar
  14. 14.
    Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D, Balasundraprabhu R, Agilan S (2013) J Mater Sci Mater Electron 24:3014–3020CrossRefGoogle Scholar
  15. 15.
    Zhu G, Pan L, Xu T, Sun Z (2011) J Electroanal Chem 659:205–208CrossRefGoogle Scholar
  16. 16.
    Senthil TS, Muthukumarasamy N, Kang M (2013) Opt Eng 52(7):075102CrossRefGoogle Scholar
  17. 17.
    Jung SW, Park M-A, Kim J-H, Kim H, Choi C-J, Kang SH, Ahn K-S (2013) Curr Appl Phys 13:1532–1536CrossRefGoogle Scholar
  18. 18.
    Suresh S (2013) J Cryst Process Technol 3(03):87CrossRefGoogle Scholar
  19. 19.
    Lin B, Fu Z, Jia Y (2001) Appl Phys Lett 79(7):943–945CrossRefGoogle Scholar
  20. 20.
    Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Sol Energy Mater Sol Cells 90(12):1773–1787CrossRefGoogle Scholar
  21. 21.
    Thambidurai M, Muthukumarasamy N, Arul NS, Agilan S, Balasundaraprabhu R (2011) J Nanopart Res 13(8):3267–3273CrossRefGoogle Scholar
  22. 22.
    Raja M, Muthukumarasamy N, Velauthapillai D, Balasundraprabhu R, Agilan S, Senthil T (2014) J Mater Sci Mater Electron 25(11):5035–5040CrossRefGoogle Scholar
  23. 23.
    Patil S, Singh A (2011) Electrochim Acta 56(16):5693–5701CrossRefGoogle Scholar
  24. 24.
    Qi J, Liu W, Biswas C, Zhang G, Sun L, Wang Z, Hu X, Zhang Y (2015) Opt Commun 349:198–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. Vinoth Pandi
    • 1
  • N. Muthukumarasamy
    • 1
  • S. Agilan
    • 1
  • M. R. Venkat Raman
    • 1
  • Y. Akila
    • 1
  • Dhayalan Velauthapillai
    • 2
  1. 1.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia
  2. 2.Faculty of Engineering and Business AdministrationBergen University College BergenNorway

Personalised recommendations