Skip to main content
Log in

Pore size control of block copolymer-templated sol–gel-synthesized titania films deposited via spray coating

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We combine a sol–gel route with spray coating to obtain porous titania films, using the block copolymer polystyrene-block-polyethylene oxide (PS-b-PEO) as a structure-directing template of the titania nanostructures and titanium(IV) isopropoxide (TTIP) as the titania precursor. Due to the water-induced phase separation and self-assembly of PS-b-PEO and TTIP, a bicontinuous crystalline anatase titania foam structure results after a calcination step. At different sintering temperatures, ranging from 400 to 800 °C, the titania films are analyzed by X-ray diffraction to determine the crystal phase of the titania foams. This study demonstrates that the pore size of the titania foam films can be controlled by different amounts of TTIP used in the sol–gel solution and by the spray parameters of the applied spray coating. Homogenous porous films with a titania network architecture can be achieved from optimizing the number of spray shots used for the film deposition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N-L, Yi C, Nazeeruddin MK, Grätzel M (2011) J Am Chem Soc 133:18042–18045

    Article  Google Scholar 

  2. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J-P, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Sci Adv 2:e1501170

  3. Assad O, Leshansky AM, Wang B, Stelzner T, Christiansen S, Haick H (2012) ACS Nano 6:4702–4712

    Article  Google Scholar 

  4. Chen L-M, Hong Z, Kwan WL, Lu C-H, Lai Y-F, Lei B, Liu C-P, Yang Y (2010) ACS Nano 4:4744–4752

    Article  Google Scholar 

  5. Vak D, Kim S-S, Jo J, Oh S-H, Na S-I, Kim J, Kim D-Y (2007) Appl Phys Lett 91:081102

    Article  Google Scholar 

  6. Abdellah A, Virdi KS, Meier R, Doblinger M, Müller-Buschbaum P, Scheu C, Lugli P, Scarpa G (2012) Adv Funct Mater 22:4078–4086

    Article  Google Scholar 

  7. Krantz J, Stubhan T, Richter M, Spallek S, Litzov I, Matt GJ, Spiecker E, Brabec CJ (2013) Adv Funct Mater 23:1711–1717

    Article  Google Scholar 

  8. Falco A, Cina L, Scarpa G, Lugli P, Abdellah A (2014) ACS Appl Mater Interfaces 6:10593–10601

    Article  Google Scholar 

  9. Sarkar K, Braden EV, Pogorzalek S, Yu S, Roth SV, Müller-Buschbaum P (2014) ChemSusChem 7:2140–2145

    Article  Google Scholar 

  10. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316–319

    Article  Google Scholar 

  11. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Nano Lett 13:1764–1769

    Article  Google Scholar 

  12. Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D (2010) J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

  13. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950

    Article  Google Scholar 

  14. Al-Homoudi IA, Thakur JS, Naik R, Auner GW, Newaz G (2007) Appl Surf Sci 253:8607–8614

    Article  Google Scholar 

  15. Nisar J, Topalian Z, De Sarkar A, Osterlund L, Ahuja R (2013) ACS Appl Mater Interfaces 5:8516–8522

    Article  Google Scholar 

  16. Liu Y, Li J, Zhou B, Chen H, Wang Z, Cai W (2011) Chem Commun 47:10314–10316

    Article  Google Scholar 

  17. Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Seok SI, Nazeeruddin MK, Grätzel M (2010) Nano Lett 10:2609–2612

    Article  Google Scholar 

  18. Lin J-F, Wang W-B, Ho C-C, Jou J-H, Chen Y-F, Su W-F (2011) J Phys Chem C 116:1955–1960

    Article  Google Scholar 

  19. Martinez L, Higuchi S, MacLachlan AJ, Stavrinadis A, Miller NC, Diedenhofen SL, Bernechea M, Sweetnam S, Nelson J, Haque SA, Tajima K, Konstantatos G (2014) Nanoscale 6:10018–10026

    Article  Google Scholar 

  20. Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M (2007) Nano Lett 7:3372–3376

    Article  Google Scholar 

  21. Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Adv Funct Mater 21:510–517

    Article  Google Scholar 

  22. Baryshnikova MV, Filatov LA, Petrov AS, Alexandrov SE (2015) Chem Vap Deposition 21:327–333

    Article  Google Scholar 

  23. Nomura M, Meester B, Schoonman J, Kapteijn F, Moulijn JA (2003) Chem Mater 15:1283–1288

    Article  Google Scholar 

  24. Szeifert JM, Fattakhova-Rohlfing D, Georgiadou D, Kalousek V, Rathouský J, Kuang D, Wenger S, Zakeeruddin SM, Grätzel M, Bein T (2009) Chem Mater 21:1260–1265

    Article  Google Scholar 

  25. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075

    Article  Google Scholar 

  26. Roy P, Berger S, Schmuki P (2011) Angew Chem. Int Ed 50:2904–2939

    Article  Google Scholar 

  27. Weickert J, Palumbiny C, Nedelcu M, Bein T, Schmidt-Mende L (2011) Chem Mater 23:155–162

    Article  Google Scholar 

  28. Kim MH, Baik JM, Zhang JP, Larson C, Li YL, Stucky GD, Moskovits M, Wodtke AM (2010) J Phys Chem C 114:10697–10702

    Article  Google Scholar 

  29. Crepaldi EL (2003) Soler-Illia GJdAA, Grosso D, Cagnol F, Ribot F, Sanchez C. J Am Chem Soc 125:9770–9786

    Article  Google Scholar 

  30. Orilall MC, Wiesner U (2011) Chem Soc Rev 40:520–535

    Article  Google Scholar 

  31. Cheng YJ, Zhou SY, Wolkenhauer M, Bumbu GG, Lenz S, Memesa M, Nett S, Emmerling S, Steffen W, Roth SV, Gutmann JS (2015) Sci Adv Mater 7:924–933

    Article  Google Scholar 

  32. Veliscek-Carolan J, Knott R, Hanley T (2015) J Phys Chem C 119:7172–7183

    Article  Google Scholar 

  33. Sokolov S, Ortel E, Kraehnert R (2009) Mater Res Bull 44:2222–2227

    Article  Google Scholar 

  34. Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Adv Mater 26:4013–4030

    Article  Google Scholar 

  35. Burnside SD, Shklover V, Barbé C, Comte P, Arendse F, Brooks K, Grätzel M (1998) Chem Mater 10:2419–2425

    Article  Google Scholar 

  36. Snaith HJ, Grätzel M (2007) Adv Mater 19:3643–3647

    Article  Google Scholar 

  37. Tiwana P, Parkinson P, Johnston MB, Snaith HJ, Herz LM (2010) J Phys Chem C 114:1365–1371

    Article  Google Scholar 

  38. Rawolle M, Niedermeier MA, Kaune G, Perlich J, Lellig P, Memesa M, Cheng Y-J, Gutmann JS, Müller-Buschbaum P (2012) Chem Soc Rev 41:5131–5142

    Article  Google Scholar 

  39. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155

    Article  Google Scholar 

  40. Raj AME, Agnes V, Bena-Jothy V, Ravidhas C, Wollschläger J, Suendorf M, Neumann M, Jayachandran M, Sanjeeviraja C (2010) Thin Solid Films 519:129–135

    Article  Google Scholar 

  41. Song L, Wang W, Körstgens V, Moseguí González D, Yao Y, Minar NK, Feckl JM, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth SV, Müller-Buschbaum P (2016) Adv Funct Mater 26:1498–1506

    Article  Google Scholar 

  42. Müller-Buschbaum P (2003) Anal Bioanal Chem 376:3–10

    Article  Google Scholar 

  43. Müller-Buschbaum P (2014) Adv Mater 26:7692–7709

    Article  Google Scholar 

  44. Sun Z, Kim JH, Zhao Y, Attard D, Dou SX (2013) Chem Commun 49:966–968

    Article  Google Scholar 

  45. Liao J-Y, He J-W, Xu H, Kuang D-B, Su C-Y (2012) J Mater Chem 22:7910–7918

    Article  Google Scholar 

  46. Rawolle M, Ruderer MA, Prams SM, Zhong Q, Magerl D, Perlich J, Roth SV, Lellig P, Gutmann JS, Müller-Buschbaum P (2011) Small 7:884–891

    Article  Google Scholar 

  47. Müller-Buschbaum P (2003) Eur Phys J E 12:443–448

    Article  Google Scholar 

  48. Jiang X, Herricks T, Xia Y (2003) Adv Mater 15:1205–1209

    Article  Google Scholar 

  49. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  50. Chen D, Huang F, Cheng Y-B, Caruso RA (2009) Adv Mater 21:2206–2210

    Article  Google Scholar 

  51. Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Chem Rev 114:10095–10130

    Article  Google Scholar 

  52. Cheng YJ, Gutmann JS (2006) J Am Chem Soc 128:4658–4674

    Article  Google Scholar 

  53. Perlich J, Schulz L, Abul-Kashem MM, Cheng YJ, Memesa M, Gutmann JS, Roth SV, Müller-Buschbaum P (2007) Langmuir 23:10299–10306

    Article  Google Scholar 

  54. Kaune G, Wang W, Metwalli E, Ruderer M, Roßner R, Roth S, Müller-Buschbaum P (2008) Eur Phys J E 26:73–79

    Article  Google Scholar 

  55. Rawolle M, Sarkar K, Niedermeier MA, Schindler M, Lellig P, Gutmann JS, Moulin J-F, Haese-Seiller M, Wochnik AS, Scheu C, Müller-Buschbaum P (2013) ACS Appl Mater Interfaces 5:719–729

    Article  Google Scholar 

  56. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expanded edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Müller-Buschbaum P (2008) Structure determination in thin film geometry using grazing incidence small-angle scattering. In: Stamm M (ed) Polymer surfaces and interfaces: characterization, modification and applications. Springer, Berlin, pp 17–46. doi:10.1007/978-3-540-73865-7_2

    Chapter  Google Scholar 

  58. Lazzari R (2002) J Appl Crystallogr 35:406–421

    Article  Google Scholar 

  59. Sarkar K, Rawolle M, Niedermeier MA, Wang W, Herzig EM, Körstgens V, Buffet A, Roth SV, Müller-Buschbaum P (2014) J Appl Crystallogr 47:76–83

    Article  Google Scholar 

  60. Pan J, Liu G, Lu GQ, Cheng H-M (2011) Angew Chem. Int Ed 50:2133–2137

    Article  Google Scholar 

  61. Shiu J-W, Lan C-M, Chang Y-C, Wu H-P, Huang W-K, Diau EWG (2012) ACS Nano 6:10862–10873

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Excellence Cluster “Nanosystems Initiative Munich” (NIM), the International Research Training Groups 2022 Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials (ATUMS) and the Bavarian Collaborative Research Project “Solar Technologies Go Hybrid” (SolTech). B. S., L. S. and Y. Y. acknowledge funding by the China Scholarship Council (CSC) and V. K. financial support from Bavarian State Ministry of Education, Science and the Arts via the project “Energy Valley Bavaria.” We thank Professor Alexander Holleitner and Peter Weiser for the chance to carry out SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller-Buschbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B., Körstgens, V., Yao, Y. et al. Pore size control of block copolymer-templated sol–gel-synthesized titania films deposited via spray coating. J Sol-Gel Sci Technol 81, 346–354 (2017). https://doi.org/10.1007/s10971-016-4134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4134-9

Keywords

Navigation