Advertisement

Journal of Sol-Gel Science and Technology

, Volume 81, Issue 2, pp 346–354 | Cite as

Pore size control of block copolymer-templated sol–gel-synthesized titania films deposited via spray coating

  • Bo Su
  • Volker Körstgens
  • Yuan Yao
  • David Magerl
  • Lin Song
  • Ezzeldin Metwalli
  • Sigrid Bernstorff
  • Peter Müller-Buschbaum
Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Abstract

We combine a sol–gel route with spray coating to obtain porous titania films, using the block copolymer polystyrene-block-polyethylene oxide (PS-b-PEO) as a structure-directing template of the titania nanostructures and titanium(IV) isopropoxide (TTIP) as the titania precursor. Due to the water-induced phase separation and self-assembly of PS-b-PEO and TTIP, a bicontinuous crystalline anatase titania foam structure results after a calcination step. At different sintering temperatures, ranging from 400 to 800 °C, the titania films are analyzed by X-ray diffraction to determine the crystal phase of the titania foams. This study demonstrates that the pore size of the titania foam films can be controlled by different amounts of TTIP used in the sol–gel solution and by the spray parameters of the applied spray coating. Homogenous porous films with a titania network architecture can be achieved from optimizing the number of spray shots used for the film deposition.

Graphical Abstract

Keywords

Titania Sol–gel GISAXS Block copolymer Spray coating 

Notes

Acknowledgments

This work was supported by funding from the Excellence Cluster “Nanosystems Initiative Munich” (NIM), the International Research Training Groups 2022 Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials (ATUMS) and the Bavarian Collaborative Research Project “Solar Technologies Go Hybrid” (SolTech). B. S., L. S. and Y. Y. acknowledge funding by the China Scholarship Council (CSC) and V. K. financial support from Bavarian State Ministry of Education, Science and the Arts via the project “Energy Valley Bavaria.” We thank Professor Alexander Holleitner and Peter Weiser for the chance to carry out SEM measurements.

References

  1. 1.
    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N-L, Yi C, Nazeeruddin MK, Grätzel M (2011) J Am Chem Soc 133:18042–18045CrossRefGoogle Scholar
  2. 2.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J-P, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Sci Adv 2:e1501170Google Scholar
  3. 3.
    Assad O, Leshansky AM, Wang B, Stelzner T, Christiansen S, Haick H (2012) ACS Nano 6:4702–4712CrossRefGoogle Scholar
  4. 4.
    Chen L-M, Hong Z, Kwan WL, Lu C-H, Lai Y-F, Lei B, Liu C-P, Yang Y (2010) ACS Nano 4:4744–4752CrossRefGoogle Scholar
  5. 5.
    Vak D, Kim S-S, Jo J, Oh S-H, Na S-I, Kim J, Kim D-Y (2007) Appl Phys Lett 91:081102CrossRefGoogle Scholar
  6. 6.
    Abdellah A, Virdi KS, Meier R, Doblinger M, Müller-Buschbaum P, Scheu C, Lugli P, Scarpa G (2012) Adv Funct Mater 22:4078–4086CrossRefGoogle Scholar
  7. 7.
    Krantz J, Stubhan T, Richter M, Spallek S, Litzov I, Matt GJ, Spiecker E, Brabec CJ (2013) Adv Funct Mater 23:1711–1717CrossRefGoogle Scholar
  8. 8.
    Falco A, Cina L, Scarpa G, Lugli P, Abdellah A (2014) ACS Appl Mater Interfaces 6:10593–10601CrossRefGoogle Scholar
  9. 9.
    Sarkar K, Braden EV, Pogorzalek S, Yu S, Roth SV, Müller-Buschbaum P (2014) ChemSusChem 7:2140–2145CrossRefGoogle Scholar
  10. 10.
    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316–319CrossRefGoogle Scholar
  11. 11.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Nano Lett 13:1764–1769CrossRefGoogle Scholar
  12. 12.
    Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D (2010) J Am Chem Soc 132:8466–8473CrossRefGoogle Scholar
  13. 13.
    Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  14. 14.
    Al-Homoudi IA, Thakur JS, Naik R, Auner GW, Newaz G (2007) Appl Surf Sci 253:8607–8614CrossRefGoogle Scholar
  15. 15.
    Nisar J, Topalian Z, De Sarkar A, Osterlund L, Ahuja R (2013) ACS Appl Mater Interfaces 5:8516–8522CrossRefGoogle Scholar
  16. 16.
    Liu Y, Li J, Zhou B, Chen H, Wang Z, Cai W (2011) Chem Commun 47:10314–10316CrossRefGoogle Scholar
  17. 17.
    Chang JA, Rhee JH, Im SH, Lee YH, Kim HJ, Seok SI, Nazeeruddin MK, Grätzel M (2010) Nano Lett 10:2609–2612CrossRefGoogle Scholar
  18. 18.
    Lin J-F, Wang W-B, Ho C-C, Jou J-H, Chen Y-F, Su W-F (2011) J Phys Chem C 116:1955–1960CrossRefGoogle Scholar
  19. 19.
    Martinez L, Higuchi S, MacLachlan AJ, Stavrinadis A, Miller NC, Diedenhofen SL, Bernechea M, Sweetnam S, Nelson J, Haque SA, Tajima K, Konstantatos G (2014) Nanoscale 6:10018–10026CrossRefGoogle Scholar
  20. 20.
    Snaith HJ, Moule AJ, Klein C, Meerholz K, Friend RH, Grätzel M (2007) Nano Lett 7:3372–3376CrossRefGoogle Scholar
  21. 21.
    Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Adv Funct Mater 21:510–517CrossRefGoogle Scholar
  22. 22.
    Baryshnikova MV, Filatov LA, Petrov AS, Alexandrov SE (2015) Chem Vap Deposition 21:327–333CrossRefGoogle Scholar
  23. 23.
    Nomura M, Meester B, Schoonman J, Kapteijn F, Moulijn JA (2003) Chem Mater 15:1283–1288CrossRefGoogle Scholar
  24. 24.
    Szeifert JM, Fattakhova-Rohlfing D, Georgiadou D, Kalousek V, Rathouský J, Kuang D, Wenger S, Zakeeruddin SM, Grätzel M, Bein T (2009) Chem Mater 21:1260–1265CrossRefGoogle Scholar
  25. 25.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  26. 26.
    Roy P, Berger S, Schmuki P (2011) Angew Chem. Int Ed 50:2904–2939CrossRefGoogle Scholar
  27. 27.
    Weickert J, Palumbiny C, Nedelcu M, Bein T, Schmidt-Mende L (2011) Chem Mater 23:155–162CrossRefGoogle Scholar
  28. 28.
    Kim MH, Baik JM, Zhang JP, Larson C, Li YL, Stucky GD, Moskovits M, Wodtke AM (2010) J Phys Chem C 114:10697–10702CrossRefGoogle Scholar
  29. 29.
    Crepaldi EL (2003) Soler-Illia GJdAA, Grosso D, Cagnol F, Ribot F, Sanchez C. J Am Chem Soc 125:9770–9786CrossRefGoogle Scholar
  30. 30.
    Orilall MC, Wiesner U (2011) Chem Soc Rev 40:520–535CrossRefGoogle Scholar
  31. 31.
    Cheng YJ, Zhou SY, Wolkenhauer M, Bumbu GG, Lenz S, Memesa M, Nett S, Emmerling S, Steffen W, Roth SV, Gutmann JS (2015) Sci Adv Mater 7:924–933CrossRefGoogle Scholar
  32. 32.
    Veliscek-Carolan J, Knott R, Hanley T (2015) J Phys Chem C 119:7172–7183CrossRefGoogle Scholar
  33. 33.
    Sokolov S, Ortel E, Kraehnert R (2009) Mater Res Bull 44:2222–2227CrossRefGoogle Scholar
  34. 34.
    Docampo P, Guldin S, Leijtens T, Noel NK, Steiner U, Snaith HJ (2014) Adv Mater 26:4013–4030CrossRefGoogle Scholar
  35. 35.
    Burnside SD, Shklover V, Barbé C, Comte P, Arendse F, Brooks K, Grätzel M (1998) Chem Mater 10:2419–2425CrossRefGoogle Scholar
  36. 36.
    Snaith HJ, Grätzel M (2007) Adv Mater 19:3643–3647CrossRefGoogle Scholar
  37. 37.
    Tiwana P, Parkinson P, Johnston MB, Snaith HJ, Herz LM (2010) J Phys Chem C 114:1365–1371CrossRefGoogle Scholar
  38. 38.
    Rawolle M, Niedermeier MA, Kaune G, Perlich J, Lellig P, Memesa M, Cheng Y-J, Gutmann JS, Müller-Buschbaum P (2012) Chem Soc Rev 41:5131–5142CrossRefGoogle Scholar
  39. 39.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155CrossRefGoogle Scholar
  40. 40.
    Raj AME, Agnes V, Bena-Jothy V, Ravidhas C, Wollschläger J, Suendorf M, Neumann M, Jayachandran M, Sanjeeviraja C (2010) Thin Solid Films 519:129–135CrossRefGoogle Scholar
  41. 41.
    Song L, Wang W, Körstgens V, Moseguí González D, Yao Y, Minar NK, Feckl JM, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth SV, Müller-Buschbaum P (2016) Adv Funct Mater 26:1498–1506CrossRefGoogle Scholar
  42. 42.
    Müller-Buschbaum P (2003) Anal Bioanal Chem 376:3–10CrossRefGoogle Scholar
  43. 43.
    Müller-Buschbaum P (2014) Adv Mater 26:7692–7709CrossRefGoogle Scholar
  44. 44.
    Sun Z, Kim JH, Zhao Y, Attard D, Dou SX (2013) Chem Commun 49:966–968CrossRefGoogle Scholar
  45. 45.
    Liao J-Y, He J-W, Xu H, Kuang D-B, Su C-Y (2012) J Mater Chem 22:7910–7918CrossRefGoogle Scholar
  46. 46.
    Rawolle M, Ruderer MA, Prams SM, Zhong Q, Magerl D, Perlich J, Roth SV, Lellig P, Gutmann JS, Müller-Buschbaum P (2011) Small 7:884–891CrossRefGoogle Scholar
  47. 47.
    Müller-Buschbaum P (2003) Eur Phys J E 12:443–448CrossRefGoogle Scholar
  48. 48.
    Jiang X, Herricks T, Xia Y (2003) Adv Mater 15:1205–1209CrossRefGoogle Scholar
  49. 49.
    O’Regan B, Grätzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  50. 50.
    Chen D, Huang F, Cheng Y-B, Caruso RA (2009) Adv Mater 21:2206–2210CrossRefGoogle Scholar
  51. 51.
    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Chem Rev 114:10095–10130CrossRefGoogle Scholar
  52. 52.
    Cheng YJ, Gutmann JS (2006) J Am Chem Soc 128:4658–4674CrossRefGoogle Scholar
  53. 53.
    Perlich J, Schulz L, Abul-Kashem MM, Cheng YJ, Memesa M, Gutmann JS, Roth SV, Müller-Buschbaum P (2007) Langmuir 23:10299–10306CrossRefGoogle Scholar
  54. 54.
    Kaune G, Wang W, Metwalli E, Ruderer M, Roßner R, Roth S, Müller-Buschbaum P (2008) Eur Phys J E 26:73–79CrossRefGoogle Scholar
  55. 55.
    Rawolle M, Sarkar K, Niedermeier MA, Schindler M, Lellig P, Gutmann JS, Moulin J-F, Haese-Seiller M, Wochnik AS, Scheu C, Müller-Buschbaum P (2013) ACS Appl Mater Interfaces 5:719–729CrossRefGoogle Scholar
  56. 56.
    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th expanded edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  57. 57.
    Müller-Buschbaum P (2008) Structure determination in thin film geometry using grazing incidence small-angle scattering. In: Stamm M (ed) Polymer surfaces and interfaces: characterization, modification and applications. Springer, Berlin, pp 17–46. doi: 10.1007/978-3-540-73865-7_2 CrossRefGoogle Scholar
  58. 58.
    Lazzari R (2002) J Appl Crystallogr 35:406–421CrossRefGoogle Scholar
  59. 59.
    Sarkar K, Rawolle M, Niedermeier MA, Wang W, Herzig EM, Körstgens V, Buffet A, Roth SV, Müller-Buschbaum P (2014) J Appl Crystallogr 47:76–83CrossRefGoogle Scholar
  60. 60.
    Pan J, Liu G, Lu GQ, Cheng H-M (2011) Angew Chem. Int Ed 50:2133–2137CrossRefGoogle Scholar
  61. 61.
    Shiu J-W, Lan C-M, Chang Y-C, Wu H-P, Huang W-K, Diau EWG (2012) ACS Nano 6:10862–10873Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lehrstuhl für Funktionelle Materialien, Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Elettra-Sincrotrone Trieste S.C.p.A.TriesteItaly

Personalised recommendations