Skip to main content
Log in

Superhydrophobic adhesive surface on titanate nanotube brushes through surface modification by capric acid

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A superhydrophobic adhesive surface is applied to titanate nanotube (TNT) brushes through surface modification using capric acid. Hydroxyl groups on the TNT brushes are reacted with carboxylic acids via esterification using a chemical vapor deposition method at 110 °C. The alignment of the titanate nanostructures and the surface modification with capric acid resulted in a hydrophobic surface. The hydrophobicity increases with surface modification time; the contact angle, θ CA, increases from 0° to 152°. After 4 h modification, the surface shows superhydrophobicity with water adhesion ability. The use of carboxylic acids as modifiers offers advantages that include low cost, environmental compatibility, and non-toxicity and is capable of adapting TNT-based functional interfaces toward a variety of applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807–2824

    Article  Google Scholar 

  2. Chen Q, Du GH, Zhang S, Peng LM (2002) Acta Crystallogr Sect B 58:587–593

    Article  Google Scholar 

  3. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K, Aritani H (2004) J Mater Sci 39:4239–4245

    Article  Google Scholar 

  4. Bavykin DV, Walsh FC (2007) J Phys Chem C 111:14644–14651

    Article  Google Scholar 

  5. Kitano M, Nakajima K, Kondo JN, Hayashi S, Hara M (2010) J Am Chem Soc 132:6622–6623

    Article  Google Scholar 

  6. Bavykin DV, Walsh FC (2009) Titanate and titania nanotubes synthesis, properties and applications. RSC nanoscience & nanotechnology. RSC, Cambridge

    Google Scholar 

  7. Idea Y, Ogawa M (2003) Chem Commun 11:1262–1263

    Article  Google Scholar 

  8. Xingtang Z, Yumei W, Chunmei Z, Xiaohong J, Baoli T, Yuncai L, Yabin H, Zuliang D (2006) Sci China, Ser B: Chem 49:155–161

    Article  Google Scholar 

  9. Wang W, Zhang J, Huang H, Wu Z, Zhang Z (2008) Colloids Surf A Physicochem Eng Asp 317:270–276

    Article  Google Scholar 

  10. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 14:3370–3377

    Article  Google Scholar 

  11. Okada K, Asakura G, Tokudome Y, Nakahira A, Takahashi M (2015) Chem Mater 27:1885–1891

    Article  Google Scholar 

  12. Armstrong G, Armstrong AR, Canales J, Bruce PG (2005) Chem Commun 19:2454–2456

    Article  Google Scholar 

  13. Lin CH, Chien SH, Chao JH, Sheu CY, Cheng YC, Huang YJ, Tsai CH (2002) Catal Lett 80:153–159

    Article  Google Scholar 

  14. Kleinhammes A, Wagner GW, Kulkarni H, Jia Y, Zhang Q, Qin LC, Wu Y (2005) Chem Phys Lett 411:81–85

    Article  Google Scholar 

  15. Uchida S, Yamamoto Y, Fujishiro Y, Watanabe A, Ito O, Sato T (1997) J Chem Soc, Faraday Trans 93:3229–3234

    Article  Google Scholar 

  16. Bavykin DV, Milsom EV, Marken F, Kim DH, Marsha DH, Riley DJ, Walsh FC, El-Abiary KH, Lapkin AA (2005) Electrochem Commun 7:1050–1058

    Article  Google Scholar 

  17. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160–3163

    Article  Google Scholar 

  18. Okada K, Takamatsu Y, Tokudome Y, Nakahira A, Takahashi M (2012) J Sol-Gel Sci Technol 65:36–40

    Article  Google Scholar 

  19. Okada K, Tokudome Y, Falcaro P, Takamatsu Y, Nakahira A, Takahashi M (2012) Chem Commun 48:6130–6132

    Article  Google Scholar 

  20. Xing S, Jiang J, Pan T (2013) Lab Chip 13:1937–1947

    Article  Google Scholar 

  21. Hong X, Gao X, Jiang L (2007) J Am Chem Soc 129:1478–1479

    Article  Google Scholar 

  22. Liu K, Cao M, Fujishima A, Jiang L (2014) Chem Rev 114:10044–10094

    Article  Google Scholar 

  23. Tokudome Y, Okada K, Nakahira A, Takahashi M (2014) J Mater Chem A 2:58–61

    Article  Google Scholar 

  24. Zhang L, Zhang Z, Wang P (2012) NPG Asia Mater 4:e8

    Article  Google Scholar 

  25. Sugimura H, Hanji T, Hayashi K, Takai O (2002) Adv Mater 14:524–526

    Article  Google Scholar 

  26. Hozumi A, Ushiyama K, Sugimura H, Takai O (1999) Langmuir 15:7600–7604

    Article  Google Scholar 

  27. Hekster FM, Laane RWPM, de Voogt P (2003) Rev Environ Contam Toxicol 179:99–121

    Article  Google Scholar 

  28. Rónavári A, Kovács D, Vágvölgyi C, Kónya Z, Kiricsi M, Pfeiffer I (2016) J Basic Microbiol 56:557–565

    Article  Google Scholar 

  29. Fenyvesi F, Kónya Z, Rázga Z, Vecsernyés M, Kása P Jr, Pintye-Hódi K, Bácskay I (2014) AAPS PharmSciTech 15:858–861

    Article  Google Scholar 

  30. Yada M, Inoue Y, Noda I, Morita T, Torikai T, Watari T, Hotokebuchi T (2013) J Nanomater 2013:476585

    Article  Google Scholar 

  31. Takahashi M, Tsukigi K, Uchino T, Yoko T (2001) Thin Solid Films 388:231–236

    Article  Google Scholar 

  32. Verplanck N, Galopin E, Camart JC, Thomy V (2007) Nano Lett 7:813–817

    Article  Google Scholar 

  33. Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127:13458–13459

    Article  Google Scholar 

  34. Zisman WA (1964) Adv Chem Ser 43:1–51

    Article  Google Scholar 

  35. Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F (2013) J Colloid Interface 402:1–18

    Article  Google Scholar 

  36. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Nano Lett 3:1701–1705

    Article  Google Scholar 

  37. Erbil TY, Demirel AL, Avci Y, Mert O (2003) Science 299:1377–1380

    Article  Google Scholar 

  38. Meng H, Wang S, Xi J, Tang Z, Jiang L (2008) J Phys Chem C 112:11454–11458

    Article  Google Scholar 

  39. Gu C, Zhang J, Tu J (2010) J Colloid Interface 352:573–579

    Article  Google Scholar 

  40. Gan QW, Zhu Q, Guo YL, Yang CQ (2009) Ind Eng Chem Res 48:9797–9803

    Article  Google Scholar 

  41. Okada K, Ricco R, Tokudome Y, Styles MJ, Hill AJ, Takahashi M, Falcaro P (2014) Adv Funct Mater 24:1969–1977

    Article  Google Scholar 

  42. Rodrigues CM, Ferreira OP, Alves OL (2010) J Braz Chem Soc 21:1341–1348

    Article  Google Scholar 

  43. Zhang QL, Du LC, Weng YX, Wang L, Chen HY, Li JQ (2004) J Phys Chem B 108:15077–15083

    Article  Google Scholar 

  44. Xie YJ, Liu C, He HB, Lu XH (2012) J Therm Anal Calorim 110:671–675

    Article  Google Scholar 

  45. Tang Y, Zhang Y, Deng J, Wei J, Tam HL, Chandran BK, Dong Z, Chen Z, Chen X (2014) Adv Mater 26:6111–6118

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grand-in-Aids from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), administrated by the Japan Society for the Promotion of Science (JSPS) (Nos. 26288108 and 26630322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, K., Tokudome, Y. & Takahashi, M. Superhydrophobic adhesive surface on titanate nanotube brushes through surface modification by capric acid. J Sol-Gel Sci Technol 79, 389–394 (2016). https://doi.org/10.1007/s10971-016-4106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4106-0

Keywords

Navigation