Skip to main content
Log in

Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na2SO3 as reducing agent

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The in situ fluorination of the TiO2 semiconductor was performed via sol–gel method. Photocatalysts with different fluoride percentage were synthesized using ammonium fluoride as hydrolysis catalyst and as anionic precursor. For comparison, sol–gel TiO2 was also studied as a reference material. The solids were characterized using several techniques in order to analyze their structural, textural and optical properties. The fluorination of the TiO2 favored the preferential formation of the anatase phase and an increase in the crystallinity; in contrast, a decrease in the specific surface area was observed. The photocatalytic activity of the materials was evaluated in the 4-nitrophenol photoreduction to 4-aminophenol using Na2SO3 as reducing agent under UV light irradiation. It was found that the generation of the ≡Ti–F surface species increased the photocatalytic properties of the semiconductor; thus, the 4-nitrophenol photoreduction rate using the fluorinated solids was higher compared with the sol–gel TiO2 and Degussa P-25. Favorable efficiency in the photoreduction of the 4-NP molecule after the recycling experiments of the photocatalyst was observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ATSDR. Agency for Toxic Substances and Disease Registry (1990) Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  2. Guo X, Li X, Jiang Y, Yi L, Wu Q, Chang H, Diao X, Sun Y, Pan X, Zhou N (2014) J Lumin 149:353–360

    Article  Google Scholar 

  3. Environmental Protection Agency (EPA) (1980) EPA-440/5 80-063. EPA, Washington

    Google Scholar 

  4. Rode CV, Vaidya MJ, Chaudhari RV (1999) Org Process Res Dev 3:465–470

    Article  Google Scholar 

  5. Praus P, Turicová M, Karlíková M, Kvitek L, Dvorský R (2013) Mater Chem Phys 140:493–498

    Article  Google Scholar 

  6. Li J, Liu C-Y, Liu Y (2012) J Mater Chem 22:8426–8430

    Article  Google Scholar 

  7. Kong XK, Sun ZY, Chen M, Chen CI, Chen QW (2013) Energy Environ Sci 6:3260–3266

    Article  Google Scholar 

  8. Yazid H, Adrian R, Farrukh MA (2013) Indian J Chem 52:184–191

    Google Scholar 

  9. Pahari SK, Pal P, Srivastava DN, Ghosh SC, Panda AB (2015) Chem Commun 51:10322–10325

    Article  Google Scholar 

  10. Cipagauta S, Hernández-Gordillo A, Gómez R (2014) J Sol–Gel Sci Technol 72:428–434

    Article  Google Scholar 

  11. Ramirez-Rave S, Hernandez-Gordillo A, Calderon HA, Galano A, Garcia-Mendoza C, Gomez R (2015) New J Chem 39:2188–2194

    Article  Google Scholar 

  12. Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2014) Appl Catal B 144:507–513

    Article  Google Scholar 

  13. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  Google Scholar 

  14. Zhang Q, Gao L, Guo J (2000) Appl Catal B 26:207–215

    Article  Google Scholar 

  15. Srinivasan SS, Wade J, Stefanakos EK, Goswami Y (2006) J Alloy Compd 424:322–326

    Article  Google Scholar 

  16. Mamane H, Horovitz I, Lozzi L, Camillo DD, Avisar D (2014) Chem Eng J 257:159–169

    Article  Google Scholar 

  17. Samantaray SK, Parida K (2001) Appl Catal A 220:9–20

    Article  Google Scholar 

  18. Vijayabalan A, Selvam K, Velmurugan R, Swaminathan M (2009) J Hazard Mater 172:914–921

    Article  Google Scholar 

  19. Yu J, Wang W, Cheng B, Su BL (2009) J Phys Chem C 113:6743–6750

    Article  Google Scholar 

  20. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Langmuir 16:2632–2641

    Article  Google Scholar 

  21. Vohra MS, Kim S, Choi W (2003) J Photochem Photobiol A 160:55–60

    Article  Google Scholar 

  22. Le TK, Flahaut D, Martinez H, Pigot T, Nguyen HKH, Huynh TKX (2014) Appl Catal B 144:1–11

    Article  Google Scholar 

  23. Yu J, Liu S, Yu H (2007) J Catal 249:59–66

    Article  Google Scholar 

  24. Yu JG, Yu JC, Cheng B, Hark SK, Iu K (2003) J Solid State Chem 174:372–380

    Article  Google Scholar 

  25. Shannon RD, Prewitt CT (1969) Acta Crystallogr Sect B 25:925–946

    Article  Google Scholar 

  26. Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2015) Appl Catal B 179:305–312

    Article  Google Scholar 

  27. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  Google Scholar 

  28. Jiang Z, Kong L, Alenazey FS, Qian Y, France L, Xiao T, Edwards P (2013) Nanoscale 5:5396–5402

    Article  Google Scholar 

  29. Esteban Benito H, Del Ángel Sánchez T, García Alamilla R, Hernández Enríquez JM, Sandoval Robles G, Paraguay Delgado F (2014) Braz J Chem Eng 31:737–745

    Article  Google Scholar 

  30. López R, Gómez R (2011) J Sol–Gel Sci Technol 64:1–7

    Google Scholar 

  31. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) J Fluor Chem 126:69–77

    Article  Google Scholar 

  32. Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A, Itoh H (2003) Nucl Instr Meth Phys Res 206:254–258

    Article  Google Scholar 

  33. Calatayud DG, Jardiel T, Peiteado M, Illas F, Giamello E, Palomares FJ, Fernández-Hevia D, Caballero AC (2015) J Phys Chem C 119:21243–21250

    Article  Google Scholar 

  34. Vasconcelos D, Costa V, Nunes E, Sabioni A, Gasparon M, Vasconcelos W (2011) Mater Sci Appl 2:1375–1382

    Google Scholar 

  35. Long M, Cai W (2011) Front Chem China 6:190–199

    Article  Google Scholar 

  36. Clark RJH, Errington W (1967) J Chem Soc A 1967:258–261

    Article  Google Scholar 

  37. Liao MH, Hsu CH, Chen DH (2006) J Solid State Chem 179:2020–2026

    Article  Google Scholar 

  38. Takeuchi M, Martra G, Coluccia S, Anpo M (2007) J Phys Chem C 111:9811–9817

    Article  Google Scholar 

  39. López T, Ortiz E, Gómez R, Picquart M (2006) J Sol–Gel Sci Technol 37:189–193

    Article  Google Scholar 

  40. Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2013) Appl Catal B 142–143:205–213

    Article  Google Scholar 

  41. He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S (2014) Energy Fuels 28:3982–3993

    Article  Google Scholar 

  42. Ruzicka J-Y, Bakar FA, Thomsen L, Cowie BC, McNicoll C, Kemmitt T, Brand H, Ingham B, Andersson G, Golovko V (2014) RSC Adv 4:20649–20658

    Article  Google Scholar 

  43. Todorova N, Giannakopoulou T, Romanos G, Vaimakis T, Yu J, Trapalis C (2008) Int J Photoenergy 2008:1–9

    Article  Google Scholar 

  44. Hernández-Gordillo A, Romero AG, Tzompantzi F, Oros-Ruiz S, Gómez R (2013) J Photochem Photobiol A 257:44–49

    Article  Google Scholar 

  45. Yang Y, Ren Y, Sun C, Hao S (2014) Green Chem 16:2273–2280

    Article  Google Scholar 

  46. Kuroda K, Ishida T, Haruta M (2009) J Mol Catal A 298:7–11

    Article  Google Scholar 

  47. Hernández-Gordillo A, Arroyo M, Zanella R, Rodríguez-González V (2014) J Hazard Mater 268:84–91

    Article  Google Scholar 

  48. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2014) J Phys Chem C 114:8814–8820

    Article  Google Scholar 

  49. Hernandez-Gordillo A, Obregon S, Paraguay-Delgado F, Rodriguez-Gonzalez V (2015) RSC Adv 5:15194–15197

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support granted by the project Sep-Integración de redes temáticas de colaboración académica 103.5/15/14156. The authors also are grateful to the PhD Raul Pérez from ININ Institute by the XPS. Claudia Castañeda would like to thank CONACyT for a scholarship Granted (Number 287123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Castañeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeda, C., Tzompantzi, F. & Gómez, R. Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na2SO3 as reducing agent. J Sol-Gel Sci Technol 80, 426–435 (2016). https://doi.org/10.1007/s10971-016-4104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4104-2

Keywords

Navigation