Journal of Sol-Gel Science and Technology

, Volume 80, Issue 2, pp 426–435 | Cite as

Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na2SO3 as reducing agent

  • Claudia Castañeda
  • Francisco Tzompantzi
  • Ricardo Gómez
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


The in situ fluorination of the TiO2 semiconductor was performed via sol–gel method. Photocatalysts with different fluoride percentage were synthesized using ammonium fluoride as hydrolysis catalyst and as anionic precursor. For comparison, sol–gel TiO2 was also studied as a reference material. The solids were characterized using several techniques in order to analyze their structural, textural and optical properties. The fluorination of the TiO2 favored the preferential formation of the anatase phase and an increase in the crystallinity; in contrast, a decrease in the specific surface area was observed. The photocatalytic activity of the materials was evaluated in the 4-nitrophenol photoreduction to 4-aminophenol using Na2SO3 as reducing agent under UV light irradiation. It was found that the generation of the ≡Ti–F surface species increased the photocatalytic properties of the semiconductor; thus, the 4-nitrophenol photoreduction rate using the fluorinated solids was higher compared with the sol–gel TiO2 and Degussa P-25. Favorable efficiency in the photoreduction of the 4-NP molecule after the recycling experiments of the photocatalyst was observed.

Graphical Abstract


Photoreduction 4-Nitrophenol 4-Aminophenol TiO2 Sol–gel Fluorinated TiO2 



The authors would like to acknowledge the support granted by the project Sep-Integración de redes temáticas de colaboración académica 103.5/15/14156. The authors also are grateful to the PhD Raul Pérez from ININ Institute by the XPS. Claudia Castañeda would like to thank CONACyT for a scholarship Granted (Number 287123).


  1. 1.
    ATSDR. Agency for Toxic Substances and Disease Registry (1990) Public Health Service, U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  2. 2.
    Guo X, Li X, Jiang Y, Yi L, Wu Q, Chang H, Diao X, Sun Y, Pan X, Zhou N (2014) J Lumin 149:353–360CrossRefGoogle Scholar
  3. 3.
    Environmental Protection Agency (EPA) (1980) EPA-440/5 80-063. EPA, WashingtonGoogle Scholar
  4. 4.
    Rode CV, Vaidya MJ, Chaudhari RV (1999) Org Process Res Dev 3:465–470CrossRefGoogle Scholar
  5. 5.
    Praus P, Turicová M, Karlíková M, Kvitek L, Dvorský R (2013) Mater Chem Phys 140:493–498CrossRefGoogle Scholar
  6. 6.
    Li J, Liu C-Y, Liu Y (2012) J Mater Chem 22:8426–8430CrossRefGoogle Scholar
  7. 7.
    Kong XK, Sun ZY, Chen M, Chen CI, Chen QW (2013) Energy Environ Sci 6:3260–3266CrossRefGoogle Scholar
  8. 8.
    Yazid H, Adrian R, Farrukh MA (2013) Indian J Chem 52:184–191Google Scholar
  9. 9.
    Pahari SK, Pal P, Srivastava DN, Ghosh SC, Panda AB (2015) Chem Commun 51:10322–10325CrossRefGoogle Scholar
  10. 10.
    Cipagauta S, Hernández-Gordillo A, Gómez R (2014) J Sol–Gel Sci Technol 72:428–434CrossRefGoogle Scholar
  11. 11.
    Ramirez-Rave S, Hernandez-Gordillo A, Calderon HA, Galano A, Garcia-Mendoza C, Gomez R (2015) New J Chem 39:2188–2194CrossRefGoogle Scholar
  12. 12.
    Hernández-Gordillo A, Romero AG, Tzompantzi F, Gómez R (2014) Appl Catal B 144:507–513CrossRefGoogle Scholar
  13. 13.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Gao L, Guo J (2000) Appl Catal B 26:207–215CrossRefGoogle Scholar
  15. 15.
    Srinivasan SS, Wade J, Stefanakos EK, Goswami Y (2006) J Alloy Compd 424:322–326CrossRefGoogle Scholar
  16. 16.
    Mamane H, Horovitz I, Lozzi L, Camillo DD, Avisar D (2014) Chem Eng J 257:159–169CrossRefGoogle Scholar
  17. 17.
    Samantaray SK, Parida K (2001) Appl Catal A 220:9–20CrossRefGoogle Scholar
  18. 18.
    Vijayabalan A, Selvam K, Velmurugan R, Swaminathan M (2009) J Hazard Mater 172:914–921CrossRefGoogle Scholar
  19. 19.
    Yu J, Wang W, Cheng B, Su BL (2009) J Phys Chem C 113:6743–6750CrossRefGoogle Scholar
  20. 20.
    Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Langmuir 16:2632–2641CrossRefGoogle Scholar
  21. 21.
    Vohra MS, Kim S, Choi W (2003) J Photochem Photobiol A 160:55–60CrossRefGoogle Scholar
  22. 22.
    Le TK, Flahaut D, Martinez H, Pigot T, Nguyen HKH, Huynh TKX (2014) Appl Catal B 144:1–11CrossRefGoogle Scholar
  23. 23.
    Yu J, Liu S, Yu H (2007) J Catal 249:59–66CrossRefGoogle Scholar
  24. 24.
    Yu JG, Yu JC, Cheng B, Hark SK, Iu K (2003) J Solid State Chem 174:372–380CrossRefGoogle Scholar
  25. 25.
    Shannon RD, Prewitt CT (1969) Acta Crystallogr Sect B 25:925–946CrossRefGoogle Scholar
  26. 26.
    Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2015) Appl Catal B 179:305–312CrossRefGoogle Scholar
  27. 27.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  28. 28.
    Jiang Z, Kong L, Alenazey FS, Qian Y, France L, Xiao T, Edwards P (2013) Nanoscale 5:5396–5402CrossRefGoogle Scholar
  29. 29.
    Esteban Benito H, Del Ángel Sánchez T, García Alamilla R, Hernández Enríquez JM, Sandoval Robles G, Paraguay Delgado F (2014) Braz J Chem Eng 31:737–745CrossRefGoogle Scholar
  30. 30.
    López R, Gómez R (2011) J Sol–Gel Sci Technol 64:1–7Google Scholar
  31. 31.
    Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) J Fluor Chem 126:69–77CrossRefGoogle Scholar
  32. 32.
    Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A, Itoh H (2003) Nucl Instr Meth Phys Res 206:254–258CrossRefGoogle Scholar
  33. 33.
    Calatayud DG, Jardiel T, Peiteado M, Illas F, Giamello E, Palomares FJ, Fernández-Hevia D, Caballero AC (2015) J Phys Chem C 119:21243–21250CrossRefGoogle Scholar
  34. 34.
    Vasconcelos D, Costa V, Nunes E, Sabioni A, Gasparon M, Vasconcelos W (2011) Mater Sci Appl 2:1375–1382Google Scholar
  35. 35.
    Long M, Cai W (2011) Front Chem China 6:190–199CrossRefGoogle Scholar
  36. 36.
    Clark RJH, Errington W (1967) J Chem Soc A 1967:258–261CrossRefGoogle Scholar
  37. 37.
    Liao MH, Hsu CH, Chen DH (2006) J Solid State Chem 179:2020–2026CrossRefGoogle Scholar
  38. 38.
    Takeuchi M, Martra G, Coluccia S, Anpo M (2007) J Phys Chem C 111:9811–9817CrossRefGoogle Scholar
  39. 39.
    López T, Ortiz E, Gómez R, Picquart M (2006) J Sol–Gel Sci Technol 37:189–193CrossRefGoogle Scholar
  40. 40.
    Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2013) Appl Catal B 142–143:205–213CrossRefGoogle Scholar
  41. 41.
    He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S (2014) Energy Fuels 28:3982–3993CrossRefGoogle Scholar
  42. 42.
    Ruzicka J-Y, Bakar FA, Thomsen L, Cowie BC, McNicoll C, Kemmitt T, Brand H, Ingham B, Andersson G, Golovko V (2014) RSC Adv 4:20649–20658CrossRefGoogle Scholar
  43. 43.
    Todorova N, Giannakopoulou T, Romanos G, Vaimakis T, Yu J, Trapalis C (2008) Int J Photoenergy 2008:1–9CrossRefGoogle Scholar
  44. 44.
    Hernández-Gordillo A, Romero AG, Tzompantzi F, Oros-Ruiz S, Gómez R (2013) J Photochem Photobiol A 257:44–49CrossRefGoogle Scholar
  45. 45.
    Yang Y, Ren Y, Sun C, Hao S (2014) Green Chem 16:2273–2280CrossRefGoogle Scholar
  46. 46.
    Kuroda K, Ishida T, Haruta M (2009) J Mol Catal A 298:7–11CrossRefGoogle Scholar
  47. 47.
    Hernández-Gordillo A, Arroyo M, Zanella R, Rodríguez-González V (2014) J Hazard Mater 268:84–91CrossRefGoogle Scholar
  48. 48.
    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2014) J Phys Chem C 114:8814–8820CrossRefGoogle Scholar
  49. 49.
    Hernandez-Gordillo A, Obregon S, Paraguay-Delgado F, Rodriguez-Gonzalez V (2015) RSC Adv 5:15194–15197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Claudia Castañeda
    • 1
  • Francisco Tzompantzi
    • 1
  • Ricardo Gómez
    • 1
  1. 1.Depto. de Química, Área de Catálisis, Grupo ECOCATALUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico

Personalised recommendations