Journal of Sol-Gel Science and Technology

, Volume 79, Issue 2, pp 319–327 | Cite as

Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids

  • Katharina Braun
  • Alexander Pochert
  • Michaela Beck
  • Richard Fiedler
  • Jens Gruber
  • Mika Lindén
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications


The application of mesoporous silica nanoparticles as a platform for drug delivery and bioimaging requires a good understanding of the degradability of these particles under physiological conditions. Optimally, the degradability should be studied in vivo using relevant administration routes and dosings, but such studies are complicated and expensive. Thus, the biodegradability is often studied in vitro using simulated body fluids. However, such studies are scarce to date, and the results are partially conflicting. The aims of this study were therefore (a) to determine the influence of the composition of different simulated body fluids on the observed silica dissolution rates and (b) to establish morphological key parameters that determine the dissolution kinetics of silica nanoparticles. As dissolution media, simulated body fluid (SBF), simulated lung fluid (SLF), simulated gastric juice (SGF) and PBS buffer were used, and the silica concentration was kept below the silica saturation limit. Three mesoporous silica particles of different sizes were studied together with one non-porous Stöber-type silica particle. The observed silica dissolution rates followed the order SLF > SBF ≈ PBS ≫ SGF. Apart from general pH effects, the presence of organic acids in SLF is suggested to enhance the silica dissolution rate. The specific surface area was identified as the main parameter controlling the rate of dissolution of the different silica particles studied, while particle size influences were minor.

Graphical Abstract

The dissolution of mesoporous silicas with different particle sizes has been studied in four different physiological buffers.


Mesoporous silica Silica dissolution Physiological buffers Simulated body fluids 



The authors gratefully acknowledge Margit Lang from the Institute of Analytical and Bioanalytical Chemistry, Ulm University, who performed the ICP-OES analysis. The research was funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 604182, FORMAMP-Innovative Nanoformulation of Antimicrobial Peptides to Treat Bacterial Infectious Diseases (

Supplementary material

10971_2016_4053_MOESM1_ESM.docx (132 kb)
Supplementary material 1 (DOCX 132 kb)


  1. 1.
    Tang F, Li L, Chen D (2012) Adv Mater 24:1504–1534CrossRefGoogle Scholar
  2. 2.
    Mamaeva V, Sahlgren C, Lindén M (2013) Adv Drug Deliv Rev 65:689–702CrossRefGoogle Scholar
  3. 3.
    Baeza A, Colilla M, Vallet-Regí M (2015) Expert Opin Drug Deliv 2:319–337CrossRefGoogle Scholar
  4. 4.
    Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Toxicol Lett 197:169–174CrossRefGoogle Scholar
  5. 5.
    Oberdörster G (2000) Int Arch Occup Environ Health 73:60–68CrossRefGoogle Scholar
  6. 6.
    Andersson J, Rosenholm J, Areva S, Lindén M (2004) Chem Mater 16:4160–4167CrossRefGoogle Scholar
  7. 7.
    He Q, Shi J, Zhu M, Chen Y, Chen F (2010) Microporous Mesoporous Mater 131:314–320CrossRefGoogle Scholar
  8. 8.
    Cauda V, Schlossbauer A, Bein T (2010) Microporous Mesoporous Mater 132:60–71CrossRefGoogle Scholar
  9. 9.
    Huang X, Teng X, Chen D, Tang F, He J (2010) Biomaterials 31:438–448CrossRefGoogle Scholar
  10. 10.
    Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2009) ACS Nano 3:197–206CrossRefGoogle Scholar
  11. 11.
    Grün M, Matsumoto A, Unger KK, Tsutsumi K (1999) Microporous Mesoporous Mater 27:207–216CrossRefGoogle Scholar
  12. 12.
    Sato-Berrú R, Saniger JM, Flores J, Sanchez-Espindola M (2013) J Mater Sci Eng A 3:237–242Google Scholar
  13. 13.
    Marques MRC, Loebenberg R, Almukainzi M (2011) Dissolut Technol 18:15–28CrossRefGoogle Scholar
  14. 14.
    Icenhower JP, Dove PM (2000) Geochim Cosmochim Acta 64:4193–4203CrossRefGoogle Scholar
  15. 15.
    Xiao Y, Lasaga AC (1994) Geochim Cosmochim Acta 58:5379–5400CrossRefGoogle Scholar
  16. 16.
    Rosenholm JM, Czuryszkiewicz T, Kleitz F, Rosenholm JB, Lindén M (2007) Langmuir 23:4315–4323CrossRefGoogle Scholar
  17. 17.
    Vogelsberger W, Löbbus M, Sonnefeld J, Seidel A (1999) Colloids Surf A 159:311–319CrossRefGoogle Scholar
  18. 18.
    Majérus O, Gérardin T, Manolescu G, Barboux P, Caurant D (2014) Phys Chem Glasses: Eur J Glass Sci Technol B 55:261–273Google Scholar
  19. 19.
    Bastos IN, Platt GM, Andrade MC, Soares GD (2008) J Mol Liq 139:121–130CrossRefGoogle Scholar
  20. 20.
    Tournié A, Majérus O, Lefèvre G, Rager MN, Walmé S, Caurant D, Barboux Ph (2013) J Colloid Interface Sci 400:161–167CrossRefGoogle Scholar
  21. 21.
    Demadis KD, Mavredaki E (2005) Environ Chem Lett 3:127–131CrossRefGoogle Scholar
  22. 22.
    McMahon PB, Vroblesky DA, Bradley PM, Chapelle FH, Gullet CD (1995) Ground Water 33:207–216CrossRefGoogle Scholar
  23. 23.
    Dove PM, Han N, De Yoreo JJ (2005) Proc Natl Acad Sci 102:15357–15362CrossRefGoogle Scholar
  24. 24.
    Kagan M, Lockwood GK, Garofalini SH (2014) Phys Chem Chem Phys 16:9294–9301CrossRefGoogle Scholar
  25. 25.
    Etienne M, Walcarius A (2003) Talanta 59:1173–1188CrossRefGoogle Scholar
  26. 26.
    Cauda V, Argyo C, Bein T (2010) J Mater Chem 20:8693–8699CrossRefGoogle Scholar
  27. 27.
    Chen K, Zhang J, Gu H (2012) J Mater Chem 22:22005–22012CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Katharina Braun
    • 1
  • Alexander Pochert
    • 1
  • Michaela Beck
    • 1
  • Richard Fiedler
    • 1
  • Jens Gruber
    • 1
  • Mika Lindén
    • 1
  1. 1.Institute for Inorganic Chemistry IIUlm UniversityUlmGermany

Personalised recommendations