Journal of Sol-Gel Science and Technology

, Volume 80, Issue 1, pp 77–86 | Cite as

How the internal structures of the imprinted and the random hydrogels change upon washing?

  • Yaşar Yılmaz
  • Ali Gelir
  • Esra Alveroglu
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


The effect of washing with acidic and basic solutions on the internal structure (fluctuations in the density and the size of the polymer clusters through the gel) of the imprinted and the random PNIPA (polyN-isopropylacrylamide) hydrogels has been studied by using steady-state fluorescence technique, swelling kinetics and SEM images. When the gel is imprinted, fluctuations in the density and the size of the polymer clusters decrease through the gel; i.e., the gel becomes more homogeneous. Washing with acid causes no considerable change in the internal structure of the both gels, but washing with base causes a drastic change in the structure by breaking the bonds between the polymer strands. The release rate of target molecules for the imprinted gel becomes considerably higher than for the random one regardless of the washing condition since the target molecules are trapped in the dense blobs of the random gel. The change in the internal structure of the gels upon washing is modeled by a spring approximation.

Graphical Abstract

The effect of washing with acidic and basic solutions on the morphology of the imprinted and the random PNIPA hydrogels was studied. When the gel is imprinted, it becomes more homogeneous. Washing with acid causes no considerable change in the morphology of the both gels, but washing with base causes a drastic change by breaking the bonds between the polymer strands.


Imprinting Hydrogels Washing 


  1. 1.
    Arshady R, Mosbach K (1981) Synthesis of substrateselective polymers by host-guest polymerization. Macromol Chem Phys 182:687–692. doi: 10.1002/macp.1981.021820240 CrossRefGoogle Scholar
  2. 2.
    Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chemie Int Ed Engl 34:1812–1832. doi: 10.1002/anie.199518121 CrossRefGoogle Scholar
  3. 3.
    Mosbach K, Ramström O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/technology 14:163–170. doi: 10.1038/nbt0296-163 CrossRefGoogle Scholar
  4. 4.
    Umpleby RJ II, Bode M, Shimizu KD (2000) Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst 125:1261–1265. doi: 10.1039/b002354j CrossRefGoogle Scholar
  5. 5.
    Sellergren B (1989) Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes. Macromol Chem Phys 190:2703–2711. doi: 10.1002/macp.1989.021901104 CrossRefGoogle Scholar
  6. 6.
    Wulff G (1982) Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure Appl Chem 54:2093–2102. doi: 10.1351/pac198254112093 CrossRefGoogle Scholar
  7. 7.
    Li Z, Guan J (2011) Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 8:991–1007. doi: 10.1517/17425247.2011.581656 CrossRefGoogle Scholar
  8. 8.
    Firestone BA, Siegel RA (1994) pH, salt, and buffer dependent swelling in ionizable copolymer gels: tests of the ideal Donnan equilibrium theory. J Biomater Sci Polym Ed 5:433–450. doi: 10.1163/156856294X00130 CrossRefGoogle Scholar
  9. 9.
    Gemeinhart RA, Chen J, Park H, Park K (2000) pH-sensitivity of fast responsive superporous hydrogels. J Biomater Sci Polym Ed 11:1371–1380. doi: 10.1163/156856200744390 CrossRefGoogle Scholar
  10. 10.
    Shang J, Chen X, Shao ZZ (2007) The electric-field-sensitive hydrogels. Prog Chem 19:1393–1399Google Scholar
  11. 11.
    Güney O (2003) Multiple-point adsorption of terbium ions by lead ion templated thermosensitive gel: elucidating recognition of conformation in gel by terbium probe. J Mol Recognit 16:67–71. doi: 10.1002/jmr.608 CrossRefGoogle Scholar
  12. 12.
    Güney O, Yilmaz Y, Pekcan Ö (2002) Metal ion templated chemosensor for metal ions based on fluorescence quenching. Sensors Actuators B Chem 85:86–89. doi: 10.1016/S0925-4005(02)00057-6 CrossRefGoogle Scholar
  13. 13.
    Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Template-imprinted nanostructured surfaces for protein recognition. Nature 398:593–597. doi: 10.1038/19267 CrossRefGoogle Scholar
  14. 14.
    Shinde S, Bunschoten A, Kruijtzer JAW, Liskamp RMJ, Sellergren B (2012) Imprinted polymers displaying high affinity for sulfated protein fragments. Angew Chemie Int Ed 51:8326–8329. doi: 10.1002/anie.201201314 CrossRefGoogle Scholar
  15. 15.
    Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliv Rev 57:1733–1741. doi: 10.1016/j.addr.2005.07.010 CrossRefGoogle Scholar
  16. 16.
    Luliński P (2013) Molecularly imprinted polymers as the future drug delivery devices. Acta Pol Pharm 70:601–609Google Scholar
  17. 17.
    Yano K, Karube I (1999) Molecularly imprinted polymers for biosensor applications. TrAC Trends Anal Chem 18:199–204. doi: 10.1016/S0165-9936(98)00119-8 CrossRefGoogle Scholar
  18. 18.
    Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504. doi: 10.1021/cr990099w CrossRefGoogle Scholar
  19. 19.
    Ramström O, Skudar K, Haines J, Patel P, Brüggemann O (2001) Food analyses using molecularly imprinted polymers. J Agric Food Chem 49:2105–2114CrossRefGoogle Scholar
  20. 20.
    Baggiani C, Anfossi L, Giovannoli C (2007) Solid phase extraction of food contaminants using molecular imprinted polymers. Anal Chim Acta 591:29–39. doi: 10.1016/j.aca.2007.01.056 CrossRefGoogle Scholar
  21. 21.
    Lee WC, Cheng CH, Pan HH, Chung TH, Hwang CC (2008) Chromatographic characterization of molecularly imprinted polymers. Anal Bioanal Chem 390:1101–1109. doi: 10.1007/s00216-007-1765-2 CrossRefGoogle Scholar
  22. 22.
    Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628. doi: 10.1002/jssc.201200784 CrossRefGoogle Scholar
  23. 23.
    Piletska EV, Romero-Guerra M, Guerreiro AR, Karim K, Turner APF, Piletsky SA (2005) Adaptation of the molecular imprinted polymers towards polar environment. Anal Chim Acta 542:47–51. doi: 10.1016/j.aca.2005.01.034 CrossRefGoogle Scholar
  24. 24.
    Piletska EV, Guerreiro AR, Romero-Guerra M, Chianella I, Turner APF, Piletsky SA (2008) Design of molecular imprinted polymers compatible with aqueous environment. Anal Chim Acta 607:54–60. doi: 10.1016/j.aca.2007.11.019 CrossRefGoogle Scholar
  25. 25.
    Chen Y-C, Brazier JJ, Yan M, Bargo PR, Prahl SA (2004) Fluorescence-based optical sensor design for molecularly imprinted polymers. Sensors Actuators B Chem 102:107–116. doi: 10.1016/j.snb.2004.02.044 CrossRefGoogle Scholar
  26. 26.
    Shimizu KD, Stephenson CJ (2010) Molecularly imprinted polymer sensor arrays. Curr Opin Chem Biol 14:743–750. doi: 10.1016/j.cbpa.2010.07.007 CrossRefGoogle Scholar
  27. 27.
    Henry OYF, Cullen DC, Piletsky SA (2005) Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review. Anal Bioanal Chem 382:947–956. doi: 10.1007/s00216-005-3255-8 CrossRefGoogle Scholar
  28. 28.
    Sawyer LC, Grubb DT, Meyers GF (2008) Polymer microscopy. Springer, New YorkGoogle Scholar
  29. 29.
    García-Calzón JA, Díaz-García ME (2007) Characterization of binding sites in molecularly imprinted polymers. Sensors Actuators B Chem 123:1180–1194. doi: 10.1016/j.snb.2006.10.068 CrossRefGoogle Scholar
  30. 30.
    Dobkowski Z (2006) Thermal analysis techniques for characterization of polymer materials. Polym Degrad Stab 91:488–493. doi: 10.1016/j.polymdegradstab.2005.01.051 CrossRefGoogle Scholar
  31. 31.
    Oh JS, Kim SH, Kang Y, Kim DW (2006) Electrochemical characterization of blend polymer electrolytes based on poly(oligo[oxyethylene]oxyterephthaloyl) for rechargeable lithium metal polymer batteries. J Power Sources 163:229–233. doi: 10.1016/j.jpowsour.2006.02.012 CrossRefGoogle Scholar
  32. 32.
    Pekcan Ö, Yilmaz Y, Okay O (1996) In situ fluorescence experiments to test the reliability of random bond and site bond percolation models during sol-gel transition in free-radical crosslinking copolymerization. Polymer (Guildf) 37:2049–2053. doi: 10.1016/0032-3861(96)85848-4 CrossRefGoogle Scholar
  33. 33.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley, Weinheim, GermanyGoogle Scholar
  34. 34.
    Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 19:459–477. doi: 10.1002/jmr.807 CrossRefGoogle Scholar
  35. 35.
    Gelir A, Yilmaz I, Yilmaz Y (2007) In situ monitoring of the synthesis of a pyranine-substituted phthalonitrile derivative via the steady-state fluorescence technique. J Phys Chem B 111:478–484. doi: 10.1021/jp064462w CrossRefGoogle Scholar
  36. 36.
    Yilmaz Y, Uysal N, Gelir A, Guney O, Aktas DK, Gogebakan S et al (2009) Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation. Spectrochim Acta—Part A Mol Biomol Spectrosc 72:332–338. doi: 10.1016/j.saa.2008.09.012 CrossRefGoogle Scholar
  37. 37.
    Thomas S, Durand D, Chassenieux C, Jyotishkumar P (2013) Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. Wiley, Weinheim, GermanyCrossRefGoogle Scholar
  38. 38.
    Holland N, Frisby J, Owens E, Hughes H, Duggan P, McLoughlin P (2010) The influence of polymer morphology on the performance of molecularly imprinted polymers. Polymer (Guildf) 51:1578–1584. doi: 10.1016/j.polymer.2009.10.035 CrossRefGoogle Scholar
  39. 39.
    Noee S, Salimraftar N, Abdouss M, Riazi G (2013) Imprinted microspheres and nanoparticles with diclofenac sodium: effect of solvent on the morphology and recognition properties. Polym Int 62:1711–1716. doi: 10.1002/pi.4471 CrossRefGoogle Scholar
  40. 40.
    Wang Z, Dornath P, Chang CC, Chen H, Fan W (2013) Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous Mesoporous Mater 181:8–16. doi: 10.1016/j.micromeso.2013.07.010 CrossRefGoogle Scholar
  41. 41.
    Rosengren AM, Karlsson BCG, Nicholls IA (2013) Consequences of morphology on molecularly imprinted polymer-ligand recognition. Int J Mol Sci 14:1207–1217. doi: 10.3390/ijms14011207 CrossRefGoogle Scholar
  42. 42.
    Golker K, Karlsson BCG, Olsson GD, Rosengren AM, Nicholls IA (2013) Influence of composition and morphology on template recognition in molecularly imprinted polymers. Macromolecules 46:1408–1414. doi: 10.1021/ma3024238 CrossRefGoogle Scholar
  43. 43.
    Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43:911–933. doi: 10.1039/c3cs60276a CrossRefGoogle Scholar
  44. 44.
    Vendamme R, Eevers W, Kaneto M, Minamizaki Y (2009) Influence of polymer morphology on the capacity of molecularly imprinted resins to release or to retain their template. Polym J 41:1055–1066. doi: 10.1295/polymj.PJ2009098 CrossRefGoogle Scholar
  45. 45.
    Ito K, Chuang J, Alvarez-Lorenzo C, Watanabe T, Ando N, Grosberg AY (2003) Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: experiment and theory. Prog Polym Sci 28:1489–1515. doi: 10.1016/j.progpolymsci.2003.07.001 CrossRefGoogle Scholar
  46. 46.
    Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92:1365. doi: 10.1063/1.458148 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics Engineering, Faculty of Science and LettersIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations