Skip to main content
Log in

Synthesis of mesoporous TiO2 and its role as a photocatalyst in degradation of indigo carmine dye

  • Brief Communication: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A modified sol–gel route without the use of acid or base was used to synthesize mesoporous TiO2 catalyst which was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force spectroscopy, optical absorption spectroscopy and Brunauer–Emmett–Teller adsorption isotherm technique. The synthesized mesoporous TiO2 is highly crystalline, pure and consisting of very high porosity and surface area 226.25 m2 g−1. The catalyst showed an excellent photocatalytic activity against the degradation of indigo carmine in the presence of visible light. It was found that 50 mL dye solution of 4 × 10−5 M concentration has been completely degraded and decolorized with optimum catalyst dose of 1.5 g/L in 180 min, acidic pH and at 25 ± 1 °C reaction temperature. The reaction kinetic was studied, and it was found that the indigo carmine dye photocatalytic degradation followed pseudo first-order reaction kinetics with rate constant, k of 0.007 min−1. Degradation of dye was confirmed by chemical oxygen demand analysis and UV–Vis spectrophotometry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Galindo C, Jacques P, Kalt A (2001) J Photochem Photobiol A Chem 141:47–56

    Article  Google Scholar 

  2. Ioannis KK, Triantafyllos AA (2004) Appl Catal B Environ 49:1–14

    Article  Google Scholar 

  3. Mahmoodi NM, Arami MJ (2009) J Photochem Photobiol B 94:20–24

    Article  Google Scholar 

  4. Solcova O, Balkan T, Guler Z, Morozova M, Dytrych P, Sarac AS (2014) Sci Adv Mater 6:2618–2624

    Article  Google Scholar 

  5. Namasivayam C, Kavitha D (2002) Dyes Pigm 54:47–58

    Article  Google Scholar 

  6. Zhang D, Gao Y, Pu X, Li W, Su C, Cai P, Seo HJ (2014) Sci Adv Mater 6:2632–2639

    Article  Google Scholar 

  7. Kansal SK, Lamba R, Mehta SK, Umar A (2013) Mater Lett 106:385–389

    Article  Google Scholar 

  8. Chai B, Xu Q, Li J, Dai K (2014) Sci Adv Mater 6:1806–1813

    Article  Google Scholar 

  9. Agorku ES, Kuvarega AT, Mamba BB, Pandey AC, Mishra AK (2015) J Rare Earths 33:498

    Article  Google Scholar 

  10. Munusamy S, Aparna RSL, Prasad RGSV (2013) Sustain Chem Process 1:2–8

    Article  Google Scholar 

  11. Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2003) J Mol Catal A Chem 193:109–120

    Article  Google Scholar 

  12. Wu CH (2004) Chemosphere 57:601–608

    Article  Google Scholar 

  13. Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Dyes Pigm 49:117–125

    Article  Google Scholar 

  14. Barka N, Assabbane A, Nounahb A, Ichou YA (2008) J Hazard Mater 152:1054–1059

    Article  Google Scholar 

  15. Koyani RD, Sanghvi GV, Sharma RK, Rajput KS (2013) Int Biodeterior Biodegrad 77:1–9

    Article  Google Scholar 

  16. Lakshmi UR, Srivastavs VC, Mall ID, Lataye DH (2009) J Environ Manag 90:710–720

    Article  Google Scholar 

  17. Othman I, Mohamed RM, Ibrahem FM (2007) J Photochem Photobiol A Chem 189:80–85

    Article  Google Scholar 

  18. Husain Q (2010) Rev Environ Sci Biotechnol 9:117–140

    Article  Google Scholar 

  19. Crini G (2006) Bioresour Technol 97:1061–1085

    Article  Google Scholar 

  20. Mittal A, Mittal J, Kurup L (2006) J Hazard Mater B 137:591–602

    Article  Google Scholar 

  21. Tank CM, Sakhare SY, Kanhe NS, Nawale AB, Das AK, Bhoraskar SV, Mathe VL (2011) Solid State Sci 13:1500–1504

    Article  Google Scholar 

  22. Paola AD, Lopez EG, Marci G, Palmisano L (2012) J Hazard Mater 211–212:3–29

    Article  Google Scholar 

  23. Costa LL, Prado AGS (2009) J Photochem Photobiol A Chem 201:45–49

    Article  Google Scholar 

  24. Ge L, Moor K, Zhang B, He Y, Kim JH (2014) Nanoscale 6:13579–13585

    Article  Google Scholar 

  25. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  Google Scholar 

  26. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  Google Scholar 

  27. Gratzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  28. Deng D, Kim MG, Lee JY, Cho J (2009) Energy Environ Sci 2:818–837

    Article  Google Scholar 

  29. Akyol A, Bayramoglu M (2005) J Hazard Mater B 124:241–246

    Article  Google Scholar 

  30. Kim D, Lee K, Roy P, Birajdar BI, Spiecker ESP (2009) Angew Chem Int Ed 121:9490–9493

    Article  Google Scholar 

  31. Kim YJ, Lee MH, Kim HJ, Lim G, Choi YS, Park NG, Kim K, Lee WI (2009) Adv Mater 21:3668–3673

    Article  Google Scholar 

  32. Jain R, Sikarwar S (2008) Int J Phys Sci 3:299–305

    Google Scholar 

  33. Parra S, Olivero J, Pulgarin C (2002) Appl Catal B Environ 36:75–85

    Article  Google Scholar 

  34. Welte A, Waldauf C, Brabec C, Wellmann P (2008) Thin Solid Films 516:7256–7259

    Article  Google Scholar 

  35. Goa B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:1491–1497

    Article  Google Scholar 

  36. Wang Y (2000) Water Res 34:990–994

    Article  Google Scholar 

  37. Kansal SK, Ali AH, Kapoor S (2010) Desalination 259:147–155

    Article  Google Scholar 

  38. Herrmann J (1999) Catal Today 53:115–129

    Article  Google Scholar 

  39. Hu C, Tang YC, Yu JC, Wong PK (2003) Appl Catal B Environ 40:131–140

    Article  Google Scholar 

  40. Hu C, Wang YZ, Tang HX (2001) Appl Catal B Environ 35:95–105

    Article  Google Scholar 

  41. Chitra S, Paramasivan K, Sinha PK, Lal KB (2004) J Clean Prod 12:429–435

    Article  Google Scholar 

  42. Dukkanci M, Gunduz G (2006) Ultrason Sonochem 13:517–522

    Article  Google Scholar 

  43. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–127

    Article  Google Scholar 

  44. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A (2003) Mater Sci Eng C 23:707–713

    Article  Google Scholar 

  45. Hoffman A, Carraway ER, Hoffman M (1994) Environ Sci Technol 28:776–785

    Article  Google Scholar 

  46. Vinodgopal K, Bedja I, Hotchandani S, Kamat PV (1994) Langmuir 10:1767–1771

    Article  Google Scholar 

  47. Jardim WF, Moraes SG, Takiyama MMK (1997) Water Res 31:1728–1732

    Article  Google Scholar 

  48. Tachikawa T, Fujitsuka M, Majima T (2007) J Phys Chem C 111:5259–5275

    Article  Google Scholar 

  49. Subramani AK, Byrappa K, Ananda S, Rai LKM, Ranganathaiah C, Yoshimura M (2007) Bull Mater Sci 30(37):41

    Google Scholar 

  50. Julkapli N, Bagheri S, Hamid SBA (2014) Sci World J 2014:1–25

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to acknowledge Department of Science & Technology, New Delhi, for funds and Junior Research Fellowship (JRF) and sophisticated instrumental laboratory, Department of Chemistry, Dr. Hari Singh Gour Central University, Sagar, India, for research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahirwar, D., Bano, M. & Khan, F. Synthesis of mesoporous TiO2 and its role as a photocatalyst in degradation of indigo carmine dye. J Sol-Gel Sci Technol 79, 228–237 (2016). https://doi.org/10.1007/s10971-016-4039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4039-7

Keywords

Navigation