Journal of Sol-Gel Science and Technology

, Volume 79, Issue 1, pp 228–237 | Cite as

Synthesis of mesoporous TiO2 and its role as a photocatalyst in degradation of indigo carmine dye

Brief Communication: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


A modified sol–gel route without the use of acid or base was used to synthesize mesoporous TiO2 catalyst which was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force spectroscopy, optical absorption spectroscopy and Brunauer–Emmett–Teller adsorption isotherm technique. The synthesized mesoporous TiO2 is highly crystalline, pure and consisting of very high porosity and surface area 226.25 m2 g−1. The catalyst showed an excellent photocatalytic activity against the degradation of indigo carmine in the presence of visible light. It was found that 50 mL dye solution of 4 × 10−5 M concentration has been completely degraded and decolorized with optimum catalyst dose of 1.5 g/L in 180 min, acidic pH and at 25 ± 1 °C reaction temperature. The reaction kinetic was studied, and it was found that the indigo carmine dye photocatalytic degradation followed pseudo first-order reaction kinetics with rate constant, k of 0.007 min−1. Degradation of dye was confirmed by chemical oxygen demand analysis and UV–Vis spectrophotometry.

Graphical Abstract


Mesoporous TiO2 Sol–gel method Indigo carmine dye Photocatalytic degradation 



The authors like to acknowledge Department of Science & Technology, New Delhi, for funds and Junior Research Fellowship (JRF) and sophisticated instrumental laboratory, Department of Chemistry, Dr. Hari Singh Gour Central University, Sagar, India, for research facility.


  1. 1.
    Galindo C, Jacques P, Kalt A (2001) J Photochem Photobiol A Chem 141:47–56CrossRefGoogle Scholar
  2. 2.
    Ioannis KK, Triantafyllos AA (2004) Appl Catal B Environ 49:1–14CrossRefGoogle Scholar
  3. 3.
    Mahmoodi NM, Arami MJ (2009) J Photochem Photobiol B 94:20–24CrossRefGoogle Scholar
  4. 4.
    Solcova O, Balkan T, Guler Z, Morozova M, Dytrych P, Sarac AS (2014) Sci Adv Mater 6:2618–2624CrossRefGoogle Scholar
  5. 5.
    Namasivayam C, Kavitha D (2002) Dyes Pigm 54:47–58CrossRefGoogle Scholar
  6. 6.
    Zhang D, Gao Y, Pu X, Li W, Su C, Cai P, Seo HJ (2014) Sci Adv Mater 6:2632–2639CrossRefGoogle Scholar
  7. 7.
    Kansal SK, Lamba R, Mehta SK, Umar A (2013) Mater Lett 106:385–389CrossRefGoogle Scholar
  8. 8.
    Chai B, Xu Q, Li J, Dai K (2014) Sci Adv Mater 6:1806–1813CrossRefGoogle Scholar
  9. 9.
    Agorku ES, Kuvarega AT, Mamba BB, Pandey AC, Mishra AK (2015) J Rare Earths 33:498CrossRefGoogle Scholar
  10. 10.
    Munusamy S, Aparna RSL, Prasad RGSV (2013) Sustain Chem Process 1:2–8CrossRefGoogle Scholar
  11. 11.
    Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2003) J Mol Catal A Chem 193:109–120CrossRefGoogle Scholar
  12. 12.
    Wu CH (2004) Chemosphere 57:601–608CrossRefGoogle Scholar
  13. 13.
    Hachem C, Bocquillon F, Zahraa O, Bouchy M (2001) Dyes Pigm 49:117–125CrossRefGoogle Scholar
  14. 14.
    Barka N, Assabbane A, Nounahb A, Ichou YA (2008) J Hazard Mater 152:1054–1059CrossRefGoogle Scholar
  15. 15.
    Koyani RD, Sanghvi GV, Sharma RK, Rajput KS (2013) Int Biodeterior Biodegrad 77:1–9CrossRefGoogle Scholar
  16. 16.
    Lakshmi UR, Srivastavs VC, Mall ID, Lataye DH (2009) J Environ Manag 90:710–720CrossRefGoogle Scholar
  17. 17.
    Othman I, Mohamed RM, Ibrahem FM (2007) J Photochem Photobiol A Chem 189:80–85CrossRefGoogle Scholar
  18. 18.
    Husain Q (2010) Rev Environ Sci Biotechnol 9:117–140CrossRefGoogle Scholar
  19. 19.
    Crini G (2006) Bioresour Technol 97:1061–1085CrossRefGoogle Scholar
  20. 20.
    Mittal A, Mittal J, Kurup L (2006) J Hazard Mater B 137:591–602CrossRefGoogle Scholar
  21. 21.
    Tank CM, Sakhare SY, Kanhe NS, Nawale AB, Das AK, Bhoraskar SV, Mathe VL (2011) Solid State Sci 13:1500–1504CrossRefGoogle Scholar
  22. 22.
    Paola AD, Lopez EG, Marci G, Palmisano L (2012) J Hazard Mater 211–212:3–29CrossRefGoogle Scholar
  23. 23.
    Costa LL, Prado AGS (2009) J Photochem Photobiol A Chem 201:45–49CrossRefGoogle Scholar
  24. 24.
    Ge L, Moor K, Zhang B, He Y, Kim JH (2014) Nanoscale 6:13579–13585CrossRefGoogle Scholar
  25. 25.
    Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  26. 26.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  27. 27.
    Gratzel M (2001) Nature 414:338–344CrossRefGoogle Scholar
  28. 28.
    Deng D, Kim MG, Lee JY, Cho J (2009) Energy Environ Sci 2:818–837CrossRefGoogle Scholar
  29. 29.
    Akyol A, Bayramoglu M (2005) J Hazard Mater B 124:241–246CrossRefGoogle Scholar
  30. 30.
    Kim D, Lee K, Roy P, Birajdar BI, Spiecker ESP (2009) Angew Chem Int Ed 121:9490–9493CrossRefGoogle Scholar
  31. 31.
    Kim YJ, Lee MH, Kim HJ, Lim G, Choi YS, Park NG, Kim K, Lee WI (2009) Adv Mater 21:3668–3673CrossRefGoogle Scholar
  32. 32.
    Jain R, Sikarwar S (2008) Int J Phys Sci 3:299–305Google Scholar
  33. 33.
    Parra S, Olivero J, Pulgarin C (2002) Appl Catal B Environ 36:75–85CrossRefGoogle Scholar
  34. 34.
    Welte A, Waldauf C, Brabec C, Wellmann P (2008) Thin Solid Films 516:7256–7259CrossRefGoogle Scholar
  35. 35.
    Goa B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:1491–1497CrossRefGoogle Scholar
  36. 36.
    Wang Y (2000) Water Res 34:990–994CrossRefGoogle Scholar
  37. 37.
    Kansal SK, Ali AH, Kapoor S (2010) Desalination 259:147–155CrossRefGoogle Scholar
  38. 38.
    Herrmann J (1999) Catal Today 53:115–129CrossRefGoogle Scholar
  39. 39.
    Hu C, Tang YC, Yu JC, Wong PK (2003) Appl Catal B Environ 40:131–140CrossRefGoogle Scholar
  40. 40.
    Hu C, Wang YZ, Tang HX (2001) Appl Catal B Environ 35:95–105CrossRefGoogle Scholar
  41. 41.
    Chitra S, Paramasivan K, Sinha PK, Lal KB (2004) J Clean Prod 12:429–435CrossRefGoogle Scholar
  42. 42.
    Dukkanci M, Gunduz G (2006) Ultrason Sonochem 13:517–522CrossRefGoogle Scholar
  43. 43.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–127CrossRefGoogle Scholar
  44. 44.
    Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A (2003) Mater Sci Eng C 23:707–713CrossRefGoogle Scholar
  45. 45.
    Hoffman A, Carraway ER, Hoffman M (1994) Environ Sci Technol 28:776–785CrossRefGoogle Scholar
  46. 46.
    Vinodgopal K, Bedja I, Hotchandani S, Kamat PV (1994) Langmuir 10:1767–1771CrossRefGoogle Scholar
  47. 47.
    Jardim WF, Moraes SG, Takiyama MMK (1997) Water Res 31:1728–1732CrossRefGoogle Scholar
  48. 48.
    Tachikawa T, Fujitsuka M, Majima T (2007) J Phys Chem C 111:5259–5275CrossRefGoogle Scholar
  49. 49.
    Subramani AK, Byrappa K, Ananda S, Rai LKM, Ranganathaiah C, Yoshimura M (2007) Bull Mater Sci 30(37):41Google Scholar
  50. 50.
    Julkapli N, Bagheri S, Hamid SBA (2014) Sci World J 2014:1–25CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanomaterials Discovery Laboratory, Department of ChemistryDr. H. S. Gour Central UniversitySagarIndia

Personalised recommendations