Journal of Sol-Gel Science and Technology

, Volume 78, Issue 3, pp 692–697 | Cite as

Low-temperature synthesis of titanium oxide/gold nanoparticle composite powders using a combination of the sol–gel process and ultraviolet light irradiation

  • Taisuke Matsumoto
  • Tsuyoshi Akiyama
  • Shoto Banya
  • Daisuke Izumoto
  • Hiroshi Sakaguchi
  • Takeo Oku
Original Paper: Sol-gel, hybrids and solution chemistries


Amorphous titanium oxide/plasmonic gold nanoparticle composite powders were synthesized by a combination of the sol–gel process and ultraviolet light irradiation using light-emitting diode at room temperature. The resultant composite powders were dried at ~50 °C. These amorphous titanium oxide/gold nanoparticle composite powders were heated to 450 °C to obtain crystalline titanium oxide/gold nanoparticles. The formation and microstructure of the titanium oxide/gold nanoparticle composite powders were confirmed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermo gravimetry–differential thermal analysis, and optical absorption measurements. A clear plasmonic absorption band due to typical plasmonic gold nanoparticle was observed in both composite powders.

Graphical Abstract


Gold nanoparticle Plasmon Titanium oxide Sol–gel process Photoinduced reduction Low-temperature synthesis 



This work was partially supported by the “Joint Usage/Research Program on Zero-Emission Energy Research” at the Institute of Advanced Energy, Kyoto University (ZE25B-19 and ZE26B-15). T.A. also wishes to thank the “Adaptable and Seamless Technology Transfer Program through Target-driven R&D (AS231Z00944C)” of the Japan Science and Technology Agency for its partial support of this study. The authors would like to acknowledge Professor B. Jeyadevan (The University of Shiga Prefecture) for the TG–DTA measurements.


  1. 1.
    O’Regan B, Grätzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663CrossRefGoogle Scholar
  3. 3.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  4. 4.
    Jung HS, Park N-G (2015) Small 11:10–25CrossRefGoogle Scholar
  5. 5.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222–225CrossRefGoogle Scholar
  6. 6.
    Kuwabara T, Sugiyama H, Yamaguchi T, Takahashi K (2009) Thin Solid Films 517:3766–3769CrossRefGoogle Scholar
  7. 7.
    Kuwabara T, Kuzuba M, Emoto N, Yamaguchi T, Taima T, Takahashi K (2014) Jpn J Appl Phys 53 (2 PART 2):02BE06 (6 pages)Google Scholar
  8. 8.
    Hu L, Yoko T, Kozuka H, Sakka S (1992) Thin Solid Films 219:18–23CrossRefGoogle Scholar
  9. 9.
    Sakka S (1994) J Sol–Gel Sci Technol 3:69–81CrossRefGoogle Scholar
  10. 10.
    Nie S, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  11. 11.
    Nikoobakht B, Wang J, El-Sayed MA (2002) Chem Phys Lett 366:17–23CrossRefGoogle Scholar
  12. 12.
    Asian K, Wu M, Lakowicz JR, Geddes CD (2007) J Am Chem Soc 129:1524–1525CrossRefGoogle Scholar
  13. 13.
    Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Nano Lett 7:496–501CrossRefGoogle Scholar
  14. 14.
    Ishida A, Kumagai K (2009) Chem Lett 38:144–145CrossRefGoogle Scholar
  15. 15.
    Terasaki N, Nitahara S, Akiyama T, Yamada S (2005) Jpn J Appl Phys 44(4B):2795–2798CrossRefGoogle Scholar
  16. 16.
    Akiyama T, Nakada M, Terasaki N, Yamada S (2006) Chem Commun 395–397Google Scholar
  17. 17.
    Sugawa K, Akiyama T, Kawazumi H, Yamada S (2009) Langmuir 25:3887–3893CrossRefGoogle Scholar
  18. 18.
    Ikeda K, Takahashi K, Masuda T, Uosaki K (2011) Angew Chem Int Ed 50:1280–1284CrossRefGoogle Scholar
  19. 19.
    Innocenzi P, Brusatin G, Martucci A, Urabe K (1996) Thin Solid Films 279:23–28CrossRefGoogle Scholar
  20. 20.
    Zhao G, Kozuka H, Yoko T (1996) Thin Solid Films 277:147–154CrossRefGoogle Scholar
  21. 21.
    Matsuoka J, Naruse R, Nasu H, Kamiya K (1997) J Non-Cryst Solids 218:151–155CrossRefGoogle Scholar
  22. 22.
    Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 83:2385–2395CrossRefGoogle Scholar
  23. 23.
    Matsuoka J, Yoshida H, Nasu H, Kamiya K (1997) J Sol–Gel Sci Technol 9:145–155Google Scholar
  24. 24.
    Kawamura G, Murakami M, Okuno T, Muto H, Matsubara A (2011) RSC Adv 1:584–587CrossRefGoogle Scholar
  25. 25.
    Kawamura G, Okuno T, Muto H, Matsuda A (2012) Nanoscale Res Lett 7:1–27CrossRefGoogle Scholar
  26. 26.
    Tian Y, Tatsuma T (2005) J Am Chem Soc 127:7632–7637CrossRefGoogle Scholar
  27. 27.
    Arakawa T, Kawahara T, Akiyama T, Yamada S (2007) Jpn J Appl Phys 46(4B):2490–2492CrossRefGoogle Scholar
  28. 28.
    Akiyama T, Kawahara T, Arakawa T, Yamada S (2008) Jpn J Appl Phys 47:3063–3066CrossRefGoogle Scholar
  29. 29.
    Viana MM, Mohallem NDS, Miquita DR, Balzuweit K, Silva-Pinto E (2013) Appl Surf Sci 265:130–136CrossRefGoogle Scholar
  30. 30.
    Viana MM, De Paula CC, Miquita DR, Mohallem NDS (2011) J Sol–Gel Sci Technol 59:19–24CrossRefGoogle Scholar
  31. 31.
    Akiyama T, Matsumoto T, Oku T (2013) The 11th meeting of the Japanese sol–gel society. Hiroshima University, Japan 72 Google Scholar
  32. 32.
    Akiyama T, Sakaguchi H (2014) The 5th international symposium of advanced energy science. Kyoto University, Japan 185 Google Scholar
  33. 33.
    Matsumoto T, Akiyama T, Oku T (2014) The 17th SANKEN international symposium. Osaka University, Japan 135 Google Scholar
  34. 34.
    Akiyama T, Matsumoto T, Banya S, Oku T (2015) XVIII International Sol-Gel Conference, Kyoto, Japan P-Tu-4-18Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Taisuke Matsumoto
    • 1
  • Tsuyoshi Akiyama
    • 1
  • Shoto Banya
    • 1
  • Daisuke Izumoto
    • 1
  • Hiroshi Sakaguchi
    • 2
  • Takeo Oku
    • 1
  1. 1.Department of Materials Science, School of EngineeringThe University of Shiga PrefectureHikoneJapan
  2. 2.Institute of Advanced EnergyKyoto UniversityGokasho, UjiJapan

Personalised recommendations