Journal of Sol-Gel Science and Technology

, Volume 78, Issue 3, pp 632–640 | Cite as

One-step synthesis of periodic ion imprinted mesoporous silica particles for highly specific removal of Cd2+ from mine wastewater

  • Weiming Li
  • Rong He
  • Lei Tan
  • Shiying Xu
  • Chengcheng Kang
  • Chaohai Wei
  • Youwen Tang
Original Paper: Sol-gel and hybrid materials with surface modification for applications


Combining the advantages of MCM-41 mesoporous materials and molecularly imprinted polymers, we designed and synthesized periodic Cd2+ imprinted mesoporous silica (Cd-IMS) through a one-step hydrothermal process. Bifunctional ligand monomers [3-(γ-aminoethylamino)-propyltrimethoxysilane] and template ions (Cd2+) were immobilized in the hexagonal channel walls of MCM-41, prior to polymerization. The resultant Cd-IMS revealed a highly ordered hexagonal structure, nano-sized pore diameters and wall thicknesses, and a large surface area. In addition, this material revealed good binding properties, including a large adsorption capacity (saturation adsorption capacity of 40 mg/g), highly specific recognition ability (maximum imprinting factor of 3.0), and rapid adsorption kinetics (equilibration within 5 min). Selectivity coefficients [KCd-IMS (Cd2+)/KCd-IMS (Cu2+ or Pb2+)] of the Cd-IMS material demonstrated values of up to 2.29 and 3.08, respectively. Following six cycles of Cd2+ adsorption, the recovery of Cd-IMS remained stable at around 89.3 %, proving its recycling potential. Furthermore, Cd-IMS was successfully applied to selectively separate and remove Cd2+ from mineral wastewater samples, with high Cd2+ recovery rates. This suggests that the routine recovery of Cd2+ from wastewater may be realized in an economically viable manner.

Graphical Abstract


Ion imprinted mesoporous silica MCM-41 Cadmium(II) Adsorption Wastewater treatment 



We gratefully acknowledge financial support from NSFC-GD Joint Foundation of the Key Projects (No. U1201234) and the National Natural Science Foundation of China (No: 21505026).


  1. 1.
    Unuabonah EI, Olu-Owolabi BI, Taubert A (2013) Ind Eng Chem Res 52(2):578–585CrossRefGoogle Scholar
  2. 2.
    Roy A, Bhattacharya J (2013) Sep Purif Technol 115:172–179CrossRefGoogle Scholar
  3. 3.
    Karagöz F, Güney O (2015) J Sol-Gel Sci Technol 76(2):349–357CrossRefGoogle Scholar
  4. 4.
    Watson J (1999) Separation methods for waste and environmental applications. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    López Marzo AM, Pons J, Blake DA (2013) Anal Chemistry 85(7):3532–3538CrossRefGoogle Scholar
  6. 6.
    Lam KF, Yeung KL, Mckay G (2007) Environ Sci Technol 41(9):3329–3334CrossRefGoogle Scholar
  7. 7.
    WHO (2008) Guidelines for drinking water quality: recommendations, vol. 1, 3rd edn. World Health Organisation, GenevaGoogle Scholar
  8. 8.
    Jal PK, Patel S, Mishra BK (2004) Talanta 62(5):1005–1028CrossRefGoogle Scholar
  9. 9.
    Yang D, Paul B, Xu W (2010) Water Res 44(3):741–750CrossRefGoogle Scholar
  10. 10.
    Wu JB, Zang SY, Yi YL (2013) J Sol-Gel Sci Technol 66(3):434–442CrossRefGoogle Scholar
  11. 11.
    Feng Z, Zhu S, Martins de Godoi DR (2012) Anal Chem 84(8):3764–3770CrossRefGoogle Scholar
  12. 12.
    Xie Y, Li H, Wang L (2011) Water Res 45(3):1189–1198CrossRefGoogle Scholar
  13. 13.
    Florea AM, Sarbu A, Donescu D (2015) J Sol-Gel Sci Technol 76(3):529–541CrossRefGoogle Scholar
  14. 14.
    Chi W, Shi H, Shi W (2012) J Hazard Mater 227:243–249CrossRefGoogle Scholar
  15. 15.
    Xu L, Pan J, Dai J (2012) J Hazard Mater 233:48–56CrossRefGoogle Scholar
  16. 16.
    Liu Y, Liu Z, Gao J (2011) J Hazard Mater 186(1):197–205CrossRefGoogle Scholar
  17. 17.
    Fang GZ, Tan J, Yan XP (2005) Sep Sci Technol 40(8):1597–1608CrossRefGoogle Scholar
  18. 18.
    Ashkenani H, Taher MA (2012) Microchim Acta 178(1–2):53–60CrossRefGoogle Scholar
  19. 19.
    MunáJung B, SooáKim M, JináKim W (2010) Chem Commun 46(21):3699–3701CrossRefGoogle Scholar
  20. 20.
    Wu G, Song G, Wu D (2010) Microchim Acta 171(1–2):203–209CrossRefGoogle Scholar
  21. 21.
    Feliciano PC, Lei Y, Shakil S (2008) Anal Chem 80(8):2881–2887CrossRefGoogle Scholar
  22. 22.
    Chen L, Xu S, Li J (2011) Chem Soc Rev 40(5):2922–2942CrossRefGoogle Scholar
  23. 23.
    Halhalli MR, Schillinger E, Aureliano CSA (2012) Chem Mater 24(15):2909–2919CrossRefGoogle Scholar
  24. 24.
    Kumar P, Guliants VV (2010) Microporous Mesoporous Mater 132(1):1–14CrossRefGoogle Scholar
  25. 25.
    Li X, Barua S, Rege K (2008) Langmuir 24(20):11935–11941CrossRefGoogle Scholar
  26. 26.
    Oshima S, Perera JM, Northcott KA, Kokusen H, Stevens GW, Komatsu Y (2006) Sep Sci Technol 41(8):1635–1643CrossRefGoogle Scholar
  27. 27.
    Vallet-Regi M, Ramila A, Del Real RP (2001) Chem Mater 13(2):308–311CrossRefGoogle Scholar
  28. 28.
    Takahashi S, Ikkai Y, Sakamoto K (2009) J Colloid Interface Sci 335(1):70–76CrossRefGoogle Scholar
  29. 29.
    Nakagawa K, Matsuyama H, Maki T (2005) Sep Purif Technol 44(2):145–151CrossRefGoogle Scholar
  30. 30.
    Balaji T, Sasidharan M, Matsunaga H (2006) Anal Bioanal Chem 384(2):488–494CrossRefGoogle Scholar
  31. 31.
    Mehdinia A, Ahmadifar M, Aziz-Zanjani MO (2012) Analyst 137(18):4368–4374CrossRefGoogle Scholar
  32. 32.
    Dai S, Burleigh MC, Ju YH (2000) J Am Chem Soc 122(5):992–993CrossRefGoogle Scholar
  33. 33.
    Dai S, Burleigh MC, Shin Y (1999) Angew Chem Int Ed 38(9):1235–1239CrossRefGoogle Scholar
  34. 34.
    Huang Y, Cai H, Feng D (2008) Chem Commun 23:2641–2643CrossRefGoogle Scholar
  35. 35.
    Kim Y, Jeon JB, Chang JY (2012) J Mater Chem 22(45):24075–24080CrossRefGoogle Scholar
  36. 36.
    Tan J, Wang HF, Yan XP (2009) Biosens Bioelectron 24(11):3316–3321CrossRefGoogle Scholar
  37. 37.
    Tsiourvas D, Tsetsekou A, Papavasiliou A (2013) Microporous Mesoporous Mater 175:59–66CrossRefGoogle Scholar
  38. 38.
    Beck JS, Vartuli JC, Roth WJ (1992) J Am Chem Soc 114(27):10834–10843CrossRefGoogle Scholar
  39. 39.
    Deng Y, Qi D, Deng C (2008) J Am Chem Soc 130(1):28–29CrossRefGoogle Scholar
  40. 40.
    Umpleby RJ, Baxter SC, Rampey AM (2004) J Chromatogr B 804(1):141–149CrossRefGoogle Scholar
  41. 41.
    Shi YY, Zhang QH, Feng LD (2012) Adv Mater Res 549:419–422CrossRefGoogle Scholar
  42. 42.
    Kang C, Li W, Tan L (2013) J Mater Chem A 1(24):7147–7153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Technical Service Center Laboratory of Panyu Entry-Exit Inspection and Quarantine BureauGuangzhouPeople’s Republic of China
  2. 2.Guangzhou Center for Disease Control and PreventionGuangzhouPeople’s Republic of China
  3. 3.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeople’s Republic of China
  4. 4.The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations