Journal of Sol-Gel Science and Technology

, Volume 78, Issue 2, pp 307–312 | Cite as

Enhanced upconversion in Dy3+, Yb3+ co-doped Gd2O3 monodisperse nanocrystals

  • Lingling Peng
  • Min Huang
  • Shixiu Cao
  • Bitao Liu
  • Tao Han
  • Cong Zhao
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Dy3+/Yb3+ co-doped Gd2O3 monodispersed nanocrystals have been synthesized using the sodium dodecyl benzene sulfonate (SDBS) as the surfactant. The SDBS surfactant plays a critical role in the forming of monodisperse Gd2O3 structures with sphere-like morphologies. The growth mechanism of the nanocrystals was proposed in detail. The samples annealed at 400 °C for 4 h exhibit good crystallinity and narrow size distribution with average size of 6–9 nm. Green and red emission of Dy3+ related to 4G11/26H11/2 and 4G11/26H9/2 transition was observed under the laser excitation at 980 nm. An involvement of three photons has been observed for these emissions. The energy distribution of upconversion spectra depended on doping concentration and the intensity changed with the increasing of Dy3+ concentration. The mechanisms of upconversion by multi-photon absorption and energy transfer processes transitions were interpreted and explained.

Graphical Abstract


Gd2O3:Dy3+, Yb3+ nanocrystals Upconversion Energy transfer Growth mechanism 



This work was financially supported by the National Natural Science Foundation of China (51302330), Science and Technology Research Foundation of the Education Commission of Chongqing City (KJ1501132), Chongqing Natural Science Foundation (cstc2015jcyjA50013), Talent Introduction Project of Chongqing University of Arts and Science (Nos. R2012CJ17, Y2013CJ25 and R2012CJ19) and new Material Development and Application Innovative Research Team of Higher Education in Chongqing of China (Grant No. 201042).


  1. 1.
    Aebischer A, Heer S, Biner D et al (2005) Chem Phys Lett 407:124–128CrossRefGoogle Scholar
  2. 2.
    Pollnau M, Gamelin DR, Lüthi SR, Güdel HU, Hehlen MP (2000) Phys Rev B 61:3337–3341CrossRefGoogle Scholar
  3. 3.
    Suyver JF, Aebischer A, Biner D et al (2005) Opt Mater 27:1111–1130CrossRefGoogle Scholar
  4. 4.
    Brigitte B, Belto D, Youping G, Alessandro C, Maurizio F (2014) Opt Eng 53:071814CrossRefGoogle Scholar
  5. 5.
    Ahrén M, Selegård L, Klasson A (2010) Langmuir 26:5753CrossRefGoogle Scholar
  6. 6.
    Hai G, Ning D, Min Y, Weiping Z, Liren L, Shangda XJ (2004) Phys Chem. B 108:19205–19209CrossRefGoogle Scholar
  7. 7.
    Gan T, Zhanjun G, Xiaoxiao L et al (2011) J Phys Chem C 115:23790–23796CrossRefGoogle Scholar
  8. 8.
    Jianle Z, Lifang L, Herman HYS et al (2007) Inorg Chem 46:5404–5410CrossRefGoogle Scholar
  9. 9.
    Dwivedi Y, Rai SB (2009) Opt Mater 31:1472–1477CrossRefGoogle Scholar
  10. 10.
    Lingling P, Bitao L, Tao H (2013) J. Rare Earths 31:650–654CrossRefGoogle Scholar
  11. 11.
    Shixiu C, Tianmo L, Wen Z, Shahid H, Zhongchang W (2014) Nanosci Nanotechnol Lett 6:1087–1090CrossRefGoogle Scholar
  12. 12.
    Shixiu C, Tianmo L, Wen Z, Shahid H, Zhongchang W (2014) Mater Lett 129:205–208CrossRefGoogle Scholar
  13. 13.
    Aihua L, Qiang L, Zhiren Z, Liang S, Wenzhi W (2007) J Appl Phys 102:113102–113105CrossRefGoogle Scholar
  14. 14.
    Duan Z, Zhang J, Hu L (2007) J Appl Phys 101:43110–43113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lingling Peng
    • 1
  • Min Huang
    • 1
  • Shixiu Cao
    • 1
  • Bitao Liu
    • 1
  • Tao Han
    • 1
  • Cong Zhao
    • 1
  1. 1.Co-innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Research Institute for New Materials TechnologyChongqing University of Arts and ScienceChongqingChina

Personalised recommendations