Journal of Sol-Gel Science and Technology

, Volume 77, Issue 2, pp 470–479 | Cite as

Microwave dielectric properties of Mn x Zn(1−x)Fe2O4 ceramics and their compatibility with patch antenna

  • Ashiqur Rahman
  • Huda Abdullah
  • Mohd Syafiq Zulfakar
  • Mandeep Jit Singh
  • Mohammad Tariqul Islam
Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications


Nanocrystalline spinel mixed ferrites are well known for their sensing application. However, they have not been explored much for microwave applications. The microwave dielectric properties of Mn x Zn(1−x)Fe2O4 were studied to find their utilization as an antenna substrate for microwave wave applications. The sol–gel method was employed to synthesize these ceramics. The formation of spinel structure and crystalline size were confirmed using X-ray diffraction method. Morphology of the samples was studied using the scanning electron microscopy. Relative permittivity (ε r) and quality factor (Q × f) of the samples were measured using LCR spectrometer. Based on the material investigation and microwave antenna theory, patch antennas were fabricated and then their performances were studied using return loss analysis. The patch antenna, fabricated from Mn0.2Zn0.8Fe2O4 ceramics showed excellent performances with relative permittivity of 5.76, Q × f of 442, return loss of −41.2 dB and wide bandwidth of 2 GHz.

Graphical Abstract


Mn–Zn ferrite Microwave dielectric properties Sol–gel method Patch antenna 



This work is supported by the University Research fund under Grant code: DIP-2014-029 and Information and Communication Technology Division, Ministry of Post, Telecommunication and Information Technology, Dhaka, Bangladesh.


  1. 1.
    Dixit G, Singh J, Srivastava R, Agrawal H, Chaudhary R (2012) Structural, magnetic and optical studies of nickel ferrite thin films. Adv Mater Lett 3(1):21–26CrossRefGoogle Scholar
  2. 2.
    Karche B, Khasbardar B, Vaingankar A (1997) X-ray, SEM and magnetic properties of Mg Cd ferrites. J Magn Magn Mater 168(3):292–298CrossRefGoogle Scholar
  3. 3.
    Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2006) Reverse micellar synthesis and properties of nanocrystalline GMR materials (LaMnO3, La0.67Sr0.33MnO3 and La0.67Ca0.33 MnO3): ramifications of size considerations. J Chem Sci 118(6):513–518CrossRefGoogle Scholar
  4. 4.
    Yan W, Li Q, Zhong H, Zhong Z (2009) Characterization and low-temperature sintering of Ni0.5Zn0.5Fe2O4 nano-powders prepared by refluxing method. Powder Technol 192(1):23–26CrossRefGoogle Scholar
  5. 5.
    Harris VG, Geiler A, Chen Y, Yoon SD, Wu M, Yang A, Chen Z, He P, Parimi PV, Zuo X (2009) Recent advances in processing and applications of microwave ferrites. J Magn Magn Mater 321(14):2035–2047CrossRefGoogle Scholar
  6. 6.
    Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60(29):3548–3552CrossRefGoogle Scholar
  7. 7.
    Kasapoglu N, Birsöz B, Baykal A, Köseoglu Y, Toprak M (2007) Synthesis and magnetic properties of octahedral ferrite NixCo1−xFe2O4 nanocrystals. Open Chem 5(2):570–580Google Scholar
  8. 8.
    Cao S-W, Zhu Y-J, Cheng G-F, Huang Y-H (2009) ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J Hazard Mater 171(1):431–435CrossRefGoogle Scholar
  9. 9.
    Liu Y-L, Liu Z-M, Yang Y, Yang H-F, Shen G-L, Yu R-Q (2005) Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens Actuators B Chem 107(2):600–604CrossRefGoogle Scholar
  10. 10.
    Koledintseva M, Drewniak J, Zhang Y, Lenn J, Thoms M (2009) Modeling of ferrite-based materials for shielding enclosures. J Magn Magn Mater 321(7):730–733CrossRefGoogle Scholar
  11. 11.
    Williams C, Chrisey D, Lubitz P, Grabowski K, Cotell C (1994) The magnetic and structural properties of pulsed laser deposited epitaxial MnZn–ferrite films. J Appl Phys 75(3):1676–1680CrossRefGoogle Scholar
  12. 12.
    Jiang J, Wynn P, Mørup S, Okada T, Berry F (1999) Magnetic structure evolution in mechanically milled nanostructured ZnFe2O4 particles. Nanostruct Mater 12(5):737–740CrossRefGoogle Scholar
  13. 13.
    Atif M, Hasanain S, Nadeem M (2006) Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun 138(8):416–421CrossRefGoogle Scholar
  14. 14.
    Shenoy S, Joy P, Anantharaman M (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269(2):217–226CrossRefGoogle Scholar
  15. 15.
    Hochepied J, Bonville P, Pileni M (2000) Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J Phys Chem B 104(5):905–912CrossRefGoogle Scholar
  16. 16.
    Li H, H-z Wu, G-x Xiao (2010) Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4. Powder Technol 198(1):157–166CrossRefGoogle Scholar
  17. 17.
    Szczygieł I, Winiarska K (2014) Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim 115(1):471–477CrossRefGoogle Scholar
  18. 18.
    Abdullah H, Jalal WNW, Zulfakar MS (2014) Miniaturization of GPS patch antennas based on novel dielectric ceramics Zn(1−x)MgxAl2O4 by sol–gel method. J Sol–Gel Sci Technol 69(2):429–440CrossRefGoogle Scholar
  19. 19.
    Zhan S, Gong C, Chen D, Jiao X (2006) Preparation of ZnFe2O4 nanofibers by sol–gel related electrospinning method. J Dispers Sci Technol 27(7):931–933CrossRefGoogle Scholar
  20. 20.
    Wu S, Sun A, Xu W, Zhang Q, Zhai F, Logan P, Volinsky AA (2012) Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method. J Magn Magn Mater 324(22):3899–3905CrossRefGoogle Scholar
  21. 21.
    Baykal A, Güner S, Demir A (2015) Synthesis and magneto-optical properties of triethylene glycol stabilized Mn1−xZnxFe2O4 nanoparticles. J Alloys Compd 619:5–11CrossRefGoogle Scholar
  22. 22.
    Chen Y-C (2011) Microwave dielectric properties of (Mg(1−x)Cox)2 Sn04 ceramics for application in dual-band inverted-E-shaped monopole antenna. IEEE Trans Ultrason Ferroelectr Freq Control 58(12):2531–2538CrossRefGoogle Scholar
  23. 23.
    Rahman A, Islam MT, Zulfakar MS, Abdullah H (2015) Synthesis and characterization of gahnite-based microwave dielectric ceramics (MDC) for microstrip antennas prepared by a sol–gel method. J Sol–Gel Sci Technol 74(2):557–565CrossRefGoogle Scholar
  24. 24.
    Wagner KW (1913) Ann Phys 345(5):817–855CrossRefGoogle Scholar
  25. 25.
    Koops CG (1951) Phys Rev 83(1):121–124CrossRefGoogle Scholar
  26. 26.
    Mohan GR, Ravinder D, Reddy AR, Boyanov B (1999) Dielectric properties of polycrystalline mixed nickel–zinc ferrites. Mater Lett 40(1):39–45CrossRefGoogle Scholar
  27. 27.
    Murthy V, Sobhanadri J (1976) Dielectric properties of some nickel-zinc ferrites at radio frequency. Phys Status Solidi 36(2):K133–K135CrossRefGoogle Scholar
  28. 28.
    Kingery W, Bowen H, Uhlmann D (1976) Introduction to ceramics. Willey, New YorkGoogle Scholar
  29. 29.
    Kumar S, Shinde TJ, Vasambekar PN (2013) Microwave synthesis and characterization of nanocrystalline Mn–Zn ferrites. Adv Mat Lett 4(5):373Google Scholar
  30. 30.
    Chen YB (2011) New dielectric material system of Nd(Mg1/2Ti1/2)O3–SrTiO3 in the microwave frequency range. J Alloys Compd 509(5):2285–2288CrossRefGoogle Scholar
  31. 31.
    He Y, Xu Y, Liu T, Zeng C, Chen W (2010) Microstructure and dielectric tunable properties of Ba0.6Sr0.4TiO3–Mg2SiO4–MgO composite. IEEE Trans Ultrason Ferroelectr Freq Control 57(7):1505–1512CrossRefGoogle Scholar
  32. 32.
    Balanis CA (2005) Antenna theory analysis and design, 3rd edn. Wiley, HobokenGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ashiqur Rahman
    • 1
  • Huda Abdullah
    • 2
  • Mohd Syafiq Zulfakar
    • 2
  • Mandeep Jit Singh
    • 2
  • Mohammad Tariqul Islam
    • 2
  1. 1.Space Science CentreUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Department of Electrical, Electronics and Systems Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations