Skip to main content
Log in

Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review

  • Original Paper: Characterization of gels, aerogels, sol-gel derived glasses, ceramics, hybrids and composites
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel process is a very unique wet chemical method for producing advanced materials in various areas of research. An increasingly evolution trend of this process is to combine with other technologies, such as surface modification, hybridization, templating induction, self-assembly, and phase separation, for preparing new materials possessing controllable shape, unique microstructure, superior properties, and special application. The review aims to present the synthesis of several typical sol–gel-derived materials (monodisperse nanoparticles, hybrid coatings, hollow microspheres, aerogels, and porous monoliths) via sol–gel process combining with other technologies . Some examples of application of the sol–gel-derived materials are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Scheme 1
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Scheme 2
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  1. Jeffrey Brinker C, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  2. Levy D, Zayat M (2015) The sol–gel handbook: synthesis, characterization and applications. Wiley-VCH, New York

    Book  Google Scholar 

  3. Aegerter MA, Leventis N (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  4. Guglielmi M, Kickelbick G, Martucci A (2011) Sol–gel nanocomposites. Springer, New York

    Google Scholar 

  5. Wright JD, Sommerdijk NAJM (2001) Sol–gel materials: chemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  6. Dimitriev Y, Ivanova Y, Iordanova E (2008) J Univ Chem Technol Metall 43(2):181

    Google Scholar 

  7. Rahman IA, Padavettan V (2012) J Nanomater 2012:1

    Article  Google Scholar 

  8. Grujić-Brojin M, Armaković S, Tomić N et al (2014) Mater Charact 88:30

    Article  Google Scholar 

  9. Purcar V, Donescu D, Spataru IC et al (2013) Rev Roum Chim 58:37

    Google Scholar 

  10. Jung I, Gurav JL, Bangi UKH, Baek S, Park HH (2012) J Non-Cryst Solids 358:550

    Article  Google Scholar 

  11. Iwamura T, Takasaki M (2015) Encycl Polym Nanomater 2015:1

    Article  Google Scholar 

  12. Wu N (2010) J Ind Text 39:293

    Article  Google Scholar 

  13. Nakanishi K (1997) J Porous Mater 4:67

    Article  Google Scholar 

  14. Gaweł B, Gaweł K, Øye G (2010) Materials 3:2815

    Article  Google Scholar 

  15. Kato M, Sakai-Kato K, Toyo’oka T (2005) J Sep Sci 28:1893

    Article  Google Scholar 

  16. Hao YZ, Zhang QL, Zhang J, Xin CR, Yang H (2012) J Mater Chem 22:23885

    Article  Google Scholar 

  17. Zhang QL, Wu F, Yang H, Zou D (2008) J Mater Chem 18:5339

    Article  Google Scholar 

  18. Zhang QL, Wu F, Yang H (2011) Scrip Mater 65:842

    Article  Google Scholar 

  19. Zhang QL, Yang H, Tong JX (2004) Rare Metal Mater Eng 33(Suppl. 3):133

    Google Scholar 

  20. Zhang QL, Yang H, Wang HP (2006) J Zhejiang Univ (Eng Sci) 40:1450

    Google Scholar 

  21. He Q, Yang H, Chen L et al (2014) Procedia Eng 94:37

    Article  Google Scholar 

  22. He Q, Yang H, Chen L et al (2013) Adv Mater Res 815:80

    Article  Google Scholar 

  23. He Q, Yang H, Chen L et al (2012) Electr Eng Mater 3:14 (In Chinese)

    Google Scholar 

  24. Guo XZ, Yang H, Zhu XY, Zhu L, Zhang LJ (2012) Mech Mater 46:11

    Article  Google Scholar 

  25. Guo XZ, Yang H, Zhu XY, Zhang LJ (2013) Scrip Mater 68:281

    Article  Google Scholar 

  26. Guo XZ, Zhu XY, Zhang LJ, Yang H, Fu PX, Gao LH (2010) J Chin Ceram Soc 38:258 (In Chinese)

    Google Scholar 

  27. Huang YP, Wu CC, Yang H, Que YS, Pan CG (2015) J Chin Ceram Soc 43:705 (In Chinese)

    Google Scholar 

  28. Wu CC, Yang H, Dong Z, Wu XR (2010) J Chin Ceram Soc 38:178 (In Chinese)

    Google Scholar 

  29. Lu JJ, Guo XZ, Yang H (2006) J Chem Ind Eng (China) 57:3511 (In Chinese)

    Google Scholar 

  30. Lu JJ, Guo XZ, Yang H (2005) Polym Mater Sci Eng (China) 22:211 (In Chinese)

    Google Scholar 

  31. Lu JJ, Guo XZ, Yang H, Zhang RJ, Zhang J (2006) Bull Chin Ceram Soc 25:133 (In Chinese)

    Google Scholar 

  32. Yang H, You WH, Shen QH et al (2014) RSC Adv 4:2793

    Article  Google Scholar 

  33. Yang H, Liu Y, Shen QH, Chen LF, You WH, Wang XM, Sheng JS (2012) J Mater Chem 22:24132

    Article  Google Scholar 

  34. Shen JC, Yang H, Shen QH, Feng Y (2013) J Mater Sci 48:7574

    Article  Google Scholar 

  35. Shen JC, Yang H, Feng Y, Cai QF, Shen QH (2014) Solid State Sci 32:8

    Article  Google Scholar 

  36. Cai WW, Yang H, Guo XZ (2014) Chin Chem Lett 25:441

    Article  Google Scholar 

  37. Cai WW, Yang H, Guo XZ (2014) Procedia Eng 94:71

    Article  Google Scholar 

  38. Yang H, Xie Y, Han DX, Mao WQ, Cai W, Guo XZ (2015) Colloid Polym Sci 293:1915

    Article  Google Scholar 

  39. Yang H, Cai WW, Guo XZ, Zhang H (2013) Thermochim Acta 569:161

    Article  Google Scholar 

  40. Fu YY, Ding XG, Meng M, Dou TJ, Yang H (2014) J Chin Ceram Soc 1:28

    Google Scholar 

  41. Yang H, Zhu WJ, Sun S, Guo XZ (2014) RSC Adv 4:32934

    Article  Google Scholar 

  42. Ren J, Cai XB, Yang H, Guo XZ (2015) J Porous Mater 22:973

    Article  Google Scholar 

  43. Guo XZ, Wang R, Yu H, Zhu Y, Nakanishi K, Kanomori K, Yang H (2015) Dalton Trans 44:13592

    Article  Google Scholar 

  44. Guo XZ, Li WY, Zhu Y, Nakanishi K, Kanomori K, Yang H (2013) Acta Phys Chim Sin 29:646

    Google Scholar 

  45. Li WY, Guo XZ, Zhu Y, Yang H, Kanomori K, Nakanishi K (2013) J Sol Gel Sci Technol 67:639

    Article  Google Scholar 

  46. Zhu WJ, Yang H, Nakanishi K, Kanomori K, Guo XZ (2015) RSC Adv 5:24803

    Article  Google Scholar 

  47. Guo XZ, Song J, Lvlin YX, Nakanishi K, Kanomori K, Yang H (2015) Sci Technol Adv Mater 16:025003

    Article  Google Scholar 

  48. Hyeon T (2003) Chem Commun 8:927

    Article  Google Scholar 

  49. Dinh CT, Ngnyen TD, Kleitz F, Do TO (2009) ACS Nano 3:3737

    Article  Google Scholar 

  50. Wang X, Zhuang J, Peng Q, Li YD (2005) Nature 437:121

    Article  Google Scholar 

  51. Cozzoli PD, Pellegrino T, Manna L (2006) Chem Soc Rev 35:1196

    Article  Google Scholar 

  52. Tseng CF, Huang CL, Yang WR (2007) Mater Lett 61:4054

    Article  Google Scholar 

  53. Fu MS, Liu XQ, Chen XM (2008) J Eur Ceram Soc 28:585

    Article  Google Scholar 

  54. Ferrarelli MC, Tan CC, Sinclair DC (2011) J Mater Chem 21:6292

    Article  Google Scholar 

  55. Ogihara H, Randall CA, Trolier-McKinstry S (2009) J Am Ceram Soc 92:110

    Article  Google Scholar 

  56. Nakazawa T, Naito A, Aruga T, Grismanovs V, Chimi Y, Iwase A, Jitsukawa S (2007) J Nucl Mater 367:1398

    Article  Google Scholar 

  57. Hoshino T, Tanaka K, Makita J, Hashimoto T (2007) J Nucl Mater 367:1052

    Article  Google Scholar 

  58. Ćosović V, Ćosović A, Talijan N et al (2012) Sci Sinter 44:245

    Article  Google Scholar 

  59. Zheng J, Li SL, Song XZ et al (2012) Adv Mater Res 479:1986

    Article  Google Scholar 

  60. Braunovic M, Konchits VV, Myshkin NK (2010) Electrical contacts fundamentals, applications and technology. CRC Press, Boca Raton

    Google Scholar 

  61. Pereñíguez R, Hueso JL, Gaillard F et al (2012) Catal Lett 142:408

    Article  Google Scholar 

  62. Wathanyu K, Rojananan S (2012) Adv Mater Res 486:529

    Article  Google Scholar 

  63. Asthana R, Ashok K, Narendra BD (2006) Nanomaterials and nanomanufacturing. In: Materials processing and manufacturing science. Elsevier, pp 551–614

  64. Gadow R, Kern F, Killinger A (2008) Mater Sci Eng, B 148:58

    Article  Google Scholar 

  65. Kireitseu M, Hui D, Tomlinson G (2008) Compos B 39:128

    Article  Google Scholar 

  66. Guo ZH, Kin TY, Lei K, Pereira T (2008) Compos Sci Technol 68:164

    Article  Google Scholar 

  67. Hyuncheol O, Sangsoo K (2007) J Aerosol Sci 38:1185

    Article  Google Scholar 

  68. Karimian H, Babaluo AA (2007) J Eur Ceram Soc 27:19

    Article  Google Scholar 

  69. Valter C, Cinzia DV (2004) Adv Colloid Interface Sci 108–109:167

    Google Scholar 

  70. Dafinone MI, Feng G, Brugarolas T, Tettey KE, Lee D (2011) ACS Nano 5:5078

    Article  Google Scholar 

  71. Helsch G, Mös A, Deubener J (2010) Sol Energy Mater Sol Cells 94:2191

    Article  Google Scholar 

  72. Wang XD, Shen J (2010) J Sol Gel Sci Technol 53:322

    Article  Google Scholar 

  73. Shimizu W, Murakami Y (2010) Appl Mater Interfaces 2:3128

    Article  Google Scholar 

  74. Chi FT, Yan LH, Lu HB, Jiang B (2011) Mater Lett 65:1095

    Article  Google Scholar 

  75. Guillemot F, Brunet-Bruneau A, Bourgeat-Lami E (2010) Chem Mater 22:2822

    Article  Google Scholar 

  76. Vicente GS, Bayón R, Germán N, Morales A (2011) Sol Energy 85:676

    Article  Google Scholar 

  77. Osborne JH (2001) Prog Org Coat 41:280

    Article  Google Scholar 

  78. Wang DH, Bierwagen GP (2009) Prog Org Coat 64:327

    Article  Google Scholar 

  79. Zhludkevich ML, Salvado MI, Ferreira MGS (2005) J Mater Chem 15:5099

    Article  Google Scholar 

  80. Moutarlier V, Neveu B, Gigandet MP (2008) Surf Coat Technol 202:2052

    Article  Google Scholar 

  81. He XD, Shi XM (2009) Prog Org Coat 65:37

    Article  Google Scholar 

  82. Chen Y, Wu CC (2010) Rare Met Mater Eng 39:288 (in Chinese)

    Article  Google Scholar 

  83. Li CH, Jordens K, Wilkes GL (2000) Wear 242:152

    Article  Google Scholar 

  84. Lee TH, Kang ES, Bae BS (2003) J Sol Gel Sci Technol 27:23

    Article  Google Scholar 

  85. Li HY, Chen YF, Ruan CX et al (2001) J Nanopart Res 3:157

    Article  Google Scholar 

  86. Wouters MEL, Wolfs DP, Van der Linde MC et al (2004) Prog Org Coat 51:312

    Article  Google Scholar 

  87. Zhu ZF, He ZL, Li JQ, Zhou JQ, Wei N, Liu DG (2011) J Mater Sci 46:931

    Article  Google Scholar 

  88. Jiang HY, Meng X, Dai HX, Deng JG, Liu YX et al (2012) J Hazard Mater 217–218:92

    Article  Google Scholar 

  89. Zhang X, Zhang LZ, Xie TF, Wang DJ (2009) J Phys Chem C 113:7371

    Article  Google Scholar 

  90. Tian LH, Ye LQ, Deng KJ, Zan L (2011) J Solid State Chem 184:1465

    Article  Google Scholar 

  91. Xu F, Guo DF, Han HJ, Wang HX, Gao ZY et al (2012) Res Chem Intermed 38:1579

    Article  Google Scholar 

  92. Zhang LS, Wang WZ, Chen ZG, Zhou L, Xu HL, Zhu W (2007) J Mater Chem 17:2526

    Article  Google Scholar 

  93. Li JF, Lu GZ, Wang YQ, Guo Y, Guo YL (2012) J Colloid Interface Sci 377:191

    Article  Google Scholar 

  94. He JY, Wang WM, Long F, Zou ZG, Fu ZY, Xu Z (2012) Mater Sci Eng, B 177:967

    Article  Google Scholar 

  95. Xiang LQ, Zhao XP, Yin JB, Fan BL (2012) J Mater Sci 47:1436

    Article  Google Scholar 

  96. Yang LX, Zhu YJ, Tong H, Liang ZH, Wang WW (2007) Cryst Growth Des 7:2716

    Article  Google Scholar 

  97. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) J Mater Chem 19:5772

    Article  Google Scholar 

  98. Hu J, Chen M, Fang XS, Wu LM (2011) Chem Soc Rev 40:5472

    Article  Google Scholar 

  99. Chau NH, Bang LA, Buu NQ, Dung TTN, Ha HT, Quang DV (2008) Adv Nat Sci 9:241

    Google Scholar 

  100. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M et al (2011) J Mater Chem 21:10330

    Article  Google Scholar 

  101. Senapati S, Srivastava SK, Singh SB, Mishra HN (2011) J Mater Chem 22:6899

    Article  Google Scholar 

  102. Cui JH, Hu CF, Yang YH, Yang LF, Wang YL, Liu YL, Jiang ZY (2012) J Mater Chem 22:8121

    Article  Google Scholar 

  103. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) J Phys Chem C 111:3629

    Article  Google Scholar 

  104. Ma JZ, Zhang JT, Xiong ZG, Yong Y, Zhao XS (2011) J Mater Chem 21:3350

    Article  Google Scholar 

  105. Xiu ZL, Wu YZ, Hao XP, Zhang L (2011) Colloid Surf A Physicochem Eng Asp 386:135

    Article  Google Scholar 

  106. Gu GX, Xu JX, Wu YF, Chen M, Wu LM (2011) J Colloid Interface Sci 359:327

    Article  Google Scholar 

  107. Naro H, Shuster M, Awnir D (2011) J Sol Gel Technol 59:194

    Article  Google Scholar 

  108. Xu WP, Zhang LC, Li JP, Lu YY, Li HH, Ma YN, Wang WD, Yu SH (2011) J Mater Chem 21:4593

    Article  Google Scholar 

  109. Wang YG, Cao LN, Guan SW, Shi GN, Luo Q, Miao L et al (2012) J Mater Chem 22:2575

    Article  Google Scholar 

  110. Roguska A, Pisarek M, Andrejcuk M, Lewandowska M, Kurzydlowski KJ et al (2012) Mater Res A 100A:1954

    Article  Google Scholar 

  111. Liu X, Yu LM, Liu F, Sheng LM, An K, Chen HX, Zhao XL (2012) J Mater Sci 47:6086

    Article  Google Scholar 

  112. Zhao YH, Zhou Y, Wu XM, Wang L, Xu L, Wei SC (2012) Appl Surf Sci 258:8867

    Article  Google Scholar 

  113. Stevanovic MM, Skapin SD, Bracko I, Milenkovic M, Petovic J, Filipic M et al (2012) Polymer 53:2818

    Article  Google Scholar 

  114. Kumar R, Howdle S, Münstedt H, Biomed J (2005) Mater Res Part B 75B:311

    Article  Google Scholar 

  115. Kumar R, Howdle S, Münstedt H (2005) Biomaterials 26:2081

    Article  Google Scholar 

  116. Rocks L, Faulds K, Graham D (2011) Chem Commun 47:4415

    Article  Google Scholar 

  117. Uzayisenga V, Lin XD, Li LM, Anema JR, Yang ZL, Huang YF, Lin HX et al (2012) Langmuir 28:9140

    Article  Google Scholar 

  118. Torres-Torres C, Tamayo-Rivera L, Rangel-Rojo R, Torrers-Martinez R et al (2011) Nanotechnology 22:355710

    Article  Google Scholar 

  119. Ma ZJ, Ji HJ, Tan DZ, Dong GP, Teng Y, Zhou JJ, Guan MJ et al (2011) Nanotechnology 22:305307

    Article  Google Scholar 

  120. Zhang ZT, Zhao B, Hu LM (1996) J Solid State Chem 121:105

    Article  Google Scholar 

  121. Chou KS, Chen CC (2007) Microporous Mesopor Mater 98:208

    Article  Google Scholar 

  122. Zhu ZF, He ZL, Li JQ, Zhou JQ, Wei N, Liu DG (2011) J Mater Sci 46:931

    Article  Google Scholar 

  123. Jiang HY, Meng X, Dai HX, Deng JG, Liu YX, Zhang L, Zhao ZX, Zhang RZ (2012) J Hazard Mater 217–218:92

    Article  Google Scholar 

  124. Zhang X, Zhang LZ, Xie TF, Wang DJ (2009) J Phys Chem C 113:7371

    Article  Google Scholar 

  125. Tian LH, Ye LQ, Deng KJ, Zan L (2011) J Solid State Chem 184:1465

    Article  Google Scholar 

  126. Zhang LW, Fu HB, Zhang C, Zhu YF (2006) J Solid State Chem 179:804

    Article  Google Scholar 

  127. Zhou J, Song B, Zhao GL, Han GR (2012) Nanoscale Res Lett 7:217

    Article  Google Scholar 

  128. Jiang DH, Hu WB, Wang HR, Shen B, Deng YD (2012) J Mater Sci 47:4972

    Article  Google Scholar 

  129. Lu F, Cai WP, Zhang YG (2008) Adv Funct Mater 18:1047

    Article  Google Scholar 

  130. Xu F, Guo DF, Han HJ, Wang HX, Gao ZY, Wu DP, Jiang K (2012) Res Chem Intermed 38:1579

    Article  Google Scholar 

  131. Zhang LS, Wang WZ, Chen ZG, Zhou L, Xu HL, Zhu W (2007) J Mater Chem 17:2526

    Article  Google Scholar 

  132. Li JF, Lu GZ, Wang YQ, Guo Y, Guo YL (2012) J Colloid Interface Sci 377:191

    Article  Google Scholar 

  133. He JY, Wang WM, Long F, Zou ZG, Fu ZY, Xu Z (2012) Mater Sci Eng, B 177:967

    Article  Google Scholar 

  134. Xiang LQ, Zhao XP, Yin JB, Fan BL (2012) J Mater Sci 47:1436

    Article  Google Scholar 

  135. Kukushkin SA, Osipov AV (1998) J Exp Theor Phys 86:1201

    Article  Google Scholar 

  136. Oskam G, Hu ZS, Penn RL, Pesika N, Searson PC (2002) Phys Rev E 66:011403

    Article  Google Scholar 

  137. Hu ZS, Oskam G, Penn RL, Pesika N, Searson PC (2003) J Phys Chem B 107:3124

    Article  Google Scholar 

  138. Yang LX, Zhu YJ, Tong H, Liang ZH, Wang WW (2007) Cryst Growth Des 7:2716

    Article  Google Scholar 

  139. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) J Mater Chem 19:5772

    Article  Google Scholar 

  140. Wang GZ, Saeterli R, Rorvik PM, van Helvoort ATJ, Holmestad R, Grande T, Einarsrud MA (2007) Chem Mater 19:2213

    Article  Google Scholar 

  141. Shen F, Que W, Liao Y, Yin X (2011) Ind Eng Chem Res 50:91317

    Google Scholar 

  142. Cheng DL, Gao HC, Hao LJ, Cao XD, Wang YJ (2013) Mater Lett 111:238

    Article  Google Scholar 

  143. Hu J, Chen M, Fang XS, Wu LM (2011) Chem Soc Rev 40:5472

    Article  Google Scholar 

  144. Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) ACS Appl Mater Interfaces 3:1538

    Article  Google Scholar 

  145. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS (2005) Angew Chem Int Ed 44:5083

    Article  Google Scholar 

  146. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Victor S-Y, Lin VSY (2003) J Am Chem Soc 125:4451

    Article  Google Scholar 

  147. Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) Chem Eur J 12:6341

    Article  Google Scholar 

  148. Steaurra Stepban (1996) NASA Conf Publ 3425:26

    Google Scholar 

  149. Kim WS, Lee WY, Hyeon T (2002) J Chem Soc 124:7

    Google Scholar 

  150. Rogers TL, Wallick D (2012) Drug Dev Ind Pharm 38:521

    Article  Google Scholar 

  151. Fernandez-Urrusono R, Gines JM, Morillo E (2000) J Microencapsul 17:331

    Article  Google Scholar 

  152. Sahoo SK, Mallick AA, Barik BB, Senapati PC (2007) Pharmazie 62:117

    Google Scholar 

  153. Akbuga J (1991) Int J Pharm 76:193–198

    Article  Google Scholar 

  154. Zhao YJ, Xie ZY, Gu HC, Zhu C, Gu ZZ (2012) Chem Soc Rev 41:3297

    Article  Google Scholar 

  155. Alain CP, Gérard MP (2002) Chem Rev 102:4243

    Article  Google Scholar 

  156. Daniel C, Alfano D, Venditto V (2005) Adv Mater 17:1515

    Article  Google Scholar 

  157. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) J Sol Gel Sci Technol 48:172

    Article  Google Scholar 

  158. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) Adv Mater 19:1589

    Article  Google Scholar 

  159. Kanamori K, Nakanishi K (2011) Chem Soc Rev 40:754

    Article  Google Scholar 

  160. García-González CA, Camino-Rey MC, Alnaief M, Zetzla C, Smirnova I (2012) J Supercrit Fluids 66:297

    Article  Google Scholar 

  161. Malinowska B, Walendziewski J, Robert D (2003) Int J Photoenergy 5:147

    Article  Google Scholar 

  162. Kim WI, Suh DJ, Park TJ (2007) Top Catal 44:499

    Article  Google Scholar 

  163. Štengl V, Bakardjieva S, Subrt J et al (2006) Microporous Mesoporous Mater 91:1

    Article  Google Scholar 

  164. Zhang L, Liang Z, Yang K (2012) Anal Chim Acta 729:26

    Article  Google Scholar 

  165. Signoretto M, Oliva L, Pinna F, Strukul G (2001) J Non-Cryst Solids 290:145

    Article  Google Scholar 

  166. Cimino S, Pirone R, Lisi L (2002) Appl Catal B 35:243

    Article  Google Scholar 

  167. Bahamonde A, Campuzano S, Yates M, Salerno P, Mendioroz S (2003) Appl Catal B 44:333

    Article  Google Scholar 

  168. Yamahara K, Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ion 176:1359

    Article  Google Scholar 

  169. Zhang XY, Liu DX, Xu DD, Asahina S, Cychosz KA, Agrawal KV, Wahedi YA, Bhan A, Hashimi SA et al (2012) Science 336:1684

    Article  Google Scholar 

  170. Lopez-Orozco S, Inayat A, Schwab A, Thangaraj S, Schwieger W (2011) Adv Mater 23:2602

    Article  Google Scholar 

  171. Davis ME (2002) Nature 417:813

    Article  Google Scholar 

  172. Yang XY, Su BL, Sanchez C (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH, New York

    Google Scholar 

  173. Stevens SM, Loiola AR, Cubillas P (2011) Solid State Sci 13:745

    Article  Google Scholar 

  174. Yang XY, Leonard A, Lemaire A, Tian G, Su BL (2011) Chem Commun 47:2763

    Article  Google Scholar 

  175. Chen X, Wang X, Fu X (2009) Energy Environ Sci 2:872

    Article  Google Scholar 

  176. Cao JL, Shao GS, Ma TY, Wang Y, Ren TZ, Wu SH, Yuan ZY (2009) J Mater Sci 44:6717

    Article  Google Scholar 

  177. Zeng TY, Zhou ZM, Zhu J, Cheng ZM, Yuan PQ, Yuan WK (2009) Catal Today 147:S41

    Article  Google Scholar 

  178. Gheorghiu S, Coppens MO (2004) AIChE J 50:812

    Article  Google Scholar 

  179. Roy N, Sohn Y, Pradhan D (2013) ACS Nano 7:2532

    Article  Google Scholar 

  180. Liu ZY, Sun DDL, Guo P, Leckie JO (2007) Nano Lett 7:1081

    Article  Google Scholar 

  181. Wang G, Wang Q, Lu W, Li JH (2006) J Phys Chem B 110:22029

    Article  Google Scholar 

  182. Huang JH, Hung PY, Hu SF, Liu RS (2010) J Mater Chem 20:6505

    Article  Google Scholar 

  183. Pan K, Dong YZ, Tian CG, Zhou W, Tian GH, Zhao BF, Fu HG (2009) Electrochim Acta 54:7350

    Article  Google Scholar 

  184. Stefik M, Heiligtag FJ, Niederberger M, Gratzel M (2013) ACS Nano 7:8981

    Article  Google Scholar 

  185. Deng D, Kim MG, Lee JY, Cho J (2009) Energ. Environ Sci 2:818

    Google Scholar 

  186. Wagemaker M, Kentgens APM, Mulder FM (2002) Nature 418:397

    Article  Google Scholar 

  187. Huang H, Yu ZY, Zhu WJ, Gan YP, Xia Y, Tao XY, Zhang WK (2014) J Phys Chem Solids 75:619

    Article  Google Scholar 

  188. Huang H, Fang JW, Xia Y, Tao XY, Gan YP, Du J, Zhu WJ, Zhang WK (2013) J Mater Chem A 1:2495

    Article  Google Scholar 

  189. Bi ZH, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi MF, Guo BK, Sun XG, Dai S (2013) J Power Sources 222:461

    Article  Google Scholar 

  190. Tanabe K (1985) J Mater Chem Phys 13:347

    Article  Google Scholar 

  191. Mercera P, Vanommen J, Doesburg E, Burggaaf A, Ross J (1991) J Appl Catal 71:363

    Article  Google Scholar 

  192. Wirth H, Hearn MA (1995) J Chromatogr 711:223

    Article  Google Scholar 

  193. Ortiz-Landeros J, Contreras-García ME, Pfeiffer H (2009) J Porous Mater 16:473

    Article  Google Scholar 

  194. Wu CH, Chen SY, Shen P (2013) J Solid State Chem 200:170

    Article  Google Scholar 

  195. Jung W, Hertz JL, Tuller HL (2009) Acta Mater 57:1399

    Article  Google Scholar 

  196. Gionco C, Paganini MC, Giamello E, Burgess R, DiValentin C, Pacchioni G (2014) J Phys Chem Lett 5:447

    Article  Google Scholar 

  197. Larsen G, Lotero E, Petkovic LM, Shobe DS (1997) J Catal 169:67

    Article  Google Scholar 

  198. Diaz-TorresL A, De la Rosa E, Salas P, Romero VH, Angeles-Chavez C (2008) J Solid State Chem 181:75

    Article  Google Scholar 

  199. Fonseca FC, de Florio DZ, Muccillo R (2009) Solid State Ion 180:822

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51372225), the Natural Science Foundation of Zhejiang Province, China (LY13B010001), and the High Science & Technique Brainstorm Project of Zhejiang Province of China (Grant No. 2014C01025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingzhong Guo or Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, Q., Ding, X. et al. Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review. J Sol-Gel Sci Technol 79, 328–358 (2016). https://doi.org/10.1007/s10971-015-3935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3935-6

Keywords

Navigation