Skip to main content
Log in

Preparation of high-concentration colloidal solution of silica-coated gold nanoparticles and their application to X-ray imaging

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study proposes a method for preparing high-concentration silica-coated Au (Au/SiO2) nanoparticles in colloidal solution from 1.5 × 10−3 M hydrogen tetrachloroaurate (III) trihydrate as the Au source and 1.0 × 10−2 M sodium citrate as the reducing reagent. The colloidal solution is applied to X-ray computed tomography (CT) imaging of mouse tissue. The Au nanoparticles in the colloidal solution had a diameter of 18.9 nm, and the Au concentration reached 1.5 × 10−3 M. The Au nanoparticles were silica-coated by modifying their surfaces with (3-aminopropyl)trimethoxysilane (APMS), then depositing silica nuclei generated by a sol–gel reaction of tetraethyl orthosilicate (TEOS) in water/ethanol initiated with sodium hydroxide (NaOH) on the surface modified with APMS. A colloidal solution of Au/SiO2 core–shell particles (silica shell thickness = 19.7 nm) was formed in a final as-prepared solution of 2.7 × 10−4 M Au, 2.0 × 10−5 M APMS, 24 M H2O, 1.9 × 10−3 M NaOH, and 4.1 × 10−3 M TEOS. The Au in the as-prepared colloidal solution was further concentrated to 0.27 M by salting-out and centrifugation. The CT value of the concentrated Au/SiO2 colloidal solution was 2.52 × 103 Hounsfield units, double that of a commercial X-ray contrast agent with the same I concentration as the Au concentration. When injected into mouse tissue, the Au/SiO2 colloidal solution demonstrated good imaging capability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andjelic S, Vasiljevic Z (2010) Myocardial infarction as an anaphylactoid reaction to iodine contrast. Rev Fr Allergol 50:579–583

    Article  Google Scholar 

  2. Nadolski GJ, Stavropoulos SW (2013) Contrast alternatives for iodinated contrast allergy and renal dysfunction: options and limitations. J Vasc Surg 57:593–598

    Article  Google Scholar 

  3. Ares JA, Amatriain GR, Iglesias CN, Forner MB, Gay MLF (2014) Contrast agents used in interventional pain: management, complications, and troubleshooting. Tech Reg Anesth Pain Manag 18:65–75

    Article  Google Scholar 

  4. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31:6537–6544

    Article  Google Scholar 

  5. Li X, Anton N, Zuber G, Vandamme T (2014) Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev 76:116–133

    Article  Google Scholar 

  6. Qia Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27

    Article  Google Scholar 

  7. Tu SJ, Yang PY, Hong JH, Lo CJ (2013) Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiat Phys Chem 88:14–20

    Article  Google Scholar 

  8. Cole LE, Vargo-Gogola T, Roeder RK (2014) Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials 35:2312–2321

    Article  Google Scholar 

  9. Silvestri A, Polito L, Bellani G, Zambelli V, Jumde RP, Psaro R, Evangelisti C (2015) Gold nanoparticles obtained by aqueous digestive ripening: their application as X-ray contrast agents. J Colloid Interface Sci 439:28–33

    Article  Google Scholar 

  10. Song Y, Feng D, Li X (2013) Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nano dots on live cells Ćas well as green gram sprouts. Talanta 116:237–244

    Article  Google Scholar 

  11. Hadrup N, Sharma AK, Poulsen M, Nielsen E (2015) Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—a review. Regul Toxicol Pharm 72:216–221

    Article  Google Scholar 

  12. Austin LA, Ahmad S, Kang B, Rommel KR, Mahmoud M, Peek ME, El-Sayed MA (2015) Cytotoxic effects of cytoplasmic-targeted and nuclear-targeted gold and silver nanoparticles in HSC-3 cells—a mechanistic study. Toxicol In Vitro 29:694–705

    Article  Google Scholar 

  13. Luty-Błochoa M, Fitzner K, Hessel V, Löb P, Maskos M, Metzke D, Pacławski K, Wojnicki M (2011) Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chem Eng J 171:279–290

    Article  Google Scholar 

  14. Namazi H, Fard AMP (2011) Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups. Mater Chem Phys 129:189–194

    Article  Google Scholar 

  15. Khan Z, Singh T, Hussain JI, Hashmi AA (2013) Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Colloid Surf B 104:11–17

    Article  Google Scholar 

  16. Njagi JI, Goia DV (2014) Nitrilotriacetic acid: a novel reducing agent for synthesizing colloidal gold. J Colloid Interface Sci 421:27–32

    Article  Google Scholar 

  17. Song G, Xu C, Li B (2015) Visual chiral recognition of mandelic acid enantiomers with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Sensor Actuat B 215:504–509

    Article  Google Scholar 

  18. Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform Au@SiO2 particles by direct silica coating on citrate-capped Au nanoparticles. Colloid Surf A 392:220–224

    Article  Google Scholar 

  19. Törngren B, Akitsu K, Ylinen A, Sandén S, Jiang H, Ruokolainen J, Komatsu M, Hamamura T, Nakazaki J, Kubo T, Segawa H, Österbacka R, Smått JH (2014) Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications. J Colloid Interface Sci 427:54–61

    Article  Google Scholar 

  20. Pak J, Yoo H (2014) Synthesis and catalytic performance of multiple gold nanodots core-mesoporous silica shell nanoparticles. Micropor Mesopor Mater 185:107–112

    Article  Google Scholar 

  21. Raj S, Adilbish G, Lee JW, Majhi SM, Chon BS, Lee CH, Jeon SH, Yu YT (2014) Fabrication of Au@SiO2 core-shell nanoparticles on conducting glass substrate by pulse electrophoresis deposition. Ceram Int 40:13621–13626

    Article  Google Scholar 

  22. Zhang TT, Zhao HM, Fan XF, Chen S, Quan X (2015) Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core-shell nanoparticles. Talanta 131:379–385

    Article  Google Scholar 

  23. Yoo SM, Rawal SB, Lee JE, Kim J, Ryu HY, Park DW, Lee WI (2015) Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Appl Catal A 499:47–54

    Article  Google Scholar 

  24. Zhang T, Zhao H, Quan X, Chen S (2015) An electrochemiluminescence sensing for DNA glycosylase assay with enhanced host-guest recognition technique based on a-cyclodextrin functionalized gold/silica cell-shell nanoparticles. Electrochim Acta 157:54–61

    Article  Google Scholar 

  25. Xu X, Kyaw AKK, Peng B, Xiong Q, Demir HV, Wang Y, Wong TKS, Sun XW (2015) Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Org Electron 22:20–28

    Article  Google Scholar 

  26. Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2011) Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties. J Colloid Interface Sci 358:329–333

    Article  Google Scholar 

  27. Kobayashi Y, Inose H, Nakagawa T, Gonda K, Takeda M, Ohuchi N, Kasuya A (2012) Synthesis of Au-silica core-shell particles by a sol–gel process. Surf Eng 28:129–133

    Article  Google Scholar 

  28. Kobayashi Y, Inose H, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013) X-ray imaging technique using colloid solution of Au/silica core-shell nanoparticles. J Nanostruct Chem 3:62

    Article  Google Scholar 

  29. Kobayashi Y, Inose H, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2013) X-ray imaging technique using colloid solution of Au/silica/poly(ethylene glycol) nanoparticles. Mater Res Innov 17:507–514

    Article  Google Scholar 

  30. Kobayashi Y, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2015) Preparation of Au/silica/poly(ethylene glycol) nanoparticle colloid solution and its use in X-ray imaging process. Nanocomposites 2:83–88

    Article  Google Scholar 

  31. Kobayashi Y, Nagasu R, Nakagawa T, Kubota Y, Gonda K, Ohuchi N (2014) Synthesis of colloid solution of silica-coated gold nanoparticles and its X-ray imaging property. J Nanoparticle Res 16:2551

    Article  Google Scholar 

  32. Dickson D, Liu G, Li C, Tachiev G, Cai Y (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177

    Article  Google Scholar 

  33. Li Z, Li J, Xu R, Hong Z, Liu Z (2015) Streaming potential method for characterizing the overlapping of diffuse layers of the electrical double layers between oppositely charged particles. Colloids Surf A 478:22–29

    Article  Google Scholar 

  34. Dimic-Misic K, Hummel M, Paltakari J, Sixta H, Maloney T, Gane P (2015) From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression. J Colloid Interface Sci 446:31–43

    Article  Google Scholar 

  35. Gabudean AM, Biro D, Astilean S (2011) Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods. J Mol Struct 993:420–424

    Article  Google Scholar 

  36. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24

    Article  Google Scholar 

  37. Hormozi-Nezhad MR, Robatjazi H, Jalali-Heravi M (2013) Thorough tuning of the aspect ratio of gold nanorods using response surface methodology. Anal Chim Acta 779:14–21

    Article  Google Scholar 

  38. Afrooz ARMN, Sivalapalan ST, Murphy CJ, Hussain SM, Schlager JJ, Saleh NB (2013) Spheres versus rods: the shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 91:93–98

    Article  Google Scholar 

  39. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuat B 195:332–351

    Article  Google Scholar 

  40. Zhang A, Tu Y, Qin S, Li Y, Zhou J, Chen N, Lu Q, Zhang B (2012) Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging. J Colloid Interface Sci 372:239–244

    Article  Google Scholar 

  41. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33:1107–1119

    Article  Google Scholar 

  42. Díaz-López R, Tsapis N, Santin M, Bridal SL, Nicolas V, Jaillard D, Libong D, Chaminade P, Marsaud V, Vauthier C, Fattal E (2010) The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 31:1723–1731

    Article  Google Scholar 

  43. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383

    Article  Google Scholar 

  44. Yoneki N, Takami T, Ito T, Anzai R, Fukuda K, Kinoshita K, Sonotaki S, Murakami Y (2015) One-pot facile preparation of PEG-modified PLGA nanoparticles: effects of PEG and PLGA on release properties of the particles. Colloids Surf A 469:66–72

    Article  Google Scholar 

Download references

Acknowledgments

We express our thanks to Prof. T. Noguchi at the College of Science of Ibaraki University, Japan (current affiliation: Faculty of Arts and Science of Kyushu University, Japan), for his help with the TEM observation. This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Nanomedicine Molecular Science” (No. 2306) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, by JSPS KAKENHI Grant Number 24310085, and by A3 Foresight Program from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y., Shibuya, K., Tokunaga, M. et al. Preparation of high-concentration colloidal solution of silica-coated gold nanoparticles and their application to X-ray imaging. J Sol-Gel Sci Technol 78, 82–90 (2016). https://doi.org/10.1007/s10971-015-3921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3921-z

Keywords

Navigation