Journal of Sol-Gel Science and Technology

, Volume 77, Issue 3, pp 718–726 | Cite as

Impact of surface modification on the properties of sol–gel synthesized nanotitanium dioxide (TiO2)-based styrene butadiene rubber (SBR) nanocomposites

  • Kumarjyoti Roy
  • Swapan Kumar Mandal
  • Md. Najib Alam
  • Subhas Chandra Debnath
Original Paper


The present paper provides a modern route to reinforce styrene butadiene rubber (SBR) nanocomposites by the proper utilization of sol–gel synthesized nanotitanium dioxide (TiO2). In order to achieve proper dispersion within the SBR matrix, the surface of nano-TiO2 is modified by cationic surfactants cetyltrimethylammonium bromide (CTAB) and tetraethylammonium bromide (TEAB). The surface modification of nano-TiO2 is characterized by Fourier transform infrared spectra and field emission scanning electron microscopy. The result reveals that after surface modification, sol–gel derived nano-TiO2 is much more efficient to improve the cure, mechanical and thermal properties of SBR nanocomposites in comparison with unmodified nano-TiO2. This is due to the excellent dispersion of modified nano-TiO2 within the SBR matrix, leading to the good compatibility between SBR and nano-TiO2, as confirmed from morphological analysis. Further, CTAB-treated nano-TiO2 has superior ability to enhance the resulting properties of SBR nanocomposites in comparison with either untreated or TEAB-treated nano-TiO2.

Graphical Abstract


Sol–gel method Nanotitanium dioxide Surface modification Dispersion Mechanical properties Thermal properties 



Authors thankfully acknowledge Department of Science and Technology, West Bengal, India (Sanction No. 715(Sanc.)/ST/P/S&T/6G-1/2013 dated 12.11.2014) for financial support. Authors also thank DST-FIST Programme, Govt. of India, and UGC-SAP DRS-II Programme, Govt. of India, for instrumental support. Mr. Kumarjyoti Roy sincerely thanks University of Kalyani for fellowship assistance.


  1. 1.
    Kueseng P, Sae-oui P, Sirisinha C, Jacob KI, Rattanasom N (2013) Polym Test 32:1229–1236CrossRefGoogle Scholar
  2. 2.
    Kueseng P, Sae-oui P, Rattanasom N (2013) Polym Test 32:731–738CrossRefGoogle Scholar
  3. 3.
    Cadambi RM, Ghassemieh E (2012) J Appl Polym Sci 124:4993–5001Google Scholar
  4. 4.
    Sookyung U, Nakason C, Thaijaroen W, Vennemann N (2014) Polym Test 33:48–56CrossRefGoogle Scholar
  5. 5.
    Chakraborty S, Kar S, Dasgupta S, Mukhopadhyay R, Bandyopadhyay S, Joshi M, Ameta SC (2010) Polym Test 29:181–187CrossRefGoogle Scholar
  6. 6.
    Diez J, Bellas R, Ramírez C, Rodríguez A (2010) J Appl Polym Sci 118:566–573CrossRefGoogle Scholar
  7. 7.
    Balachandran M, Bhagawan SS (2012) J Appl Polym Sci 126:1983–1992CrossRefGoogle Scholar
  8. 8.
    Mishra S, Shimpi NG, Patil UD (2007) J Polym Res 14:449–459CrossRefGoogle Scholar
  9. 9.
    Roy K, Alam MN, Mandal SK, Debnath SC (2015) J Sol–Gel Sci Technol 73:306–313CrossRefGoogle Scholar
  10. 10.
    Kim J, Oh T, Lee D (2003) Polym Int 52:1203–1208CrossRefGoogle Scholar
  11. 11.
    Mishra S, Shimpi NG, Mali AD (2012) Polym Adv Technol 23:236–246CrossRefGoogle Scholar
  12. 12.
    Taghvaei-Ganjali S, Malekzadeh M, Farahani M, Abbasian A (2011) khosravi M. J Appl Polym Sci 122:249–256CrossRefGoogle Scholar
  13. 13.
    Ma X, Lee N, Oh H, Kim J, Rhee C, Park K, Kim S (2010) Colloids Surf A Physicochem Eng Asp 358:172–176CrossRefGoogle Scholar
  14. 14.
    Qu Y, Wang W, Jing L, Song S, Shi X, Xue L, Fu H (2010) Appl Surf Sci 257:151–156CrossRefGoogle Scholar
  15. 15.
    Sudha M, Senthilkumar S, Hariharan R, Suganthi A, Rajarajan M (2013) J Sol–Gel Sci Technol 65:301–310CrossRefGoogle Scholar
  16. 16.
    Roy K, Alam MN, Mandal SK, Debnath SC (2014) J Sol–Gel Sci Technol 70:378–384CrossRefGoogle Scholar
  17. 17.
    Ikeda Y, Kameda Y (2004) J Sol–Gel Sci Technol 31:137–142CrossRefGoogle Scholar
  18. 18.
    Ikeda Y, Poompradub S, Morita Y, Kohjiya S (2008) J Sol–Gel Sci Technol 45:299–306CrossRefGoogle Scholar
  19. 19.
    Chaichua B, Prasassarakich P, Poompradub S (2009) J Sol–Gel Sci Technol 52:219–227CrossRefGoogle Scholar
  20. 20.
    Watcharakul N, Poompradub S, Prasassarakich P (2011) J Sol–Gel Sci Technol 58:407–418CrossRefGoogle Scholar
  21. 21.
    Karim J, Ahmad A, Abdullah I, Dahlan HM (2012) J Sol–Gel Sci Technol 62:7–12CrossRefGoogle Scholar
  22. 22.
    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Compos Part A Appl Sci Manuf 40:309–316CrossRefGoogle Scholar
  23. 23.
    Sun D, Li X, Zhang Y, Li Y (2011) J Macromol Sci Part B Phys 50:1810–1821CrossRefGoogle Scholar
  24. 24.
    Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Photochem Photobiol 87:1002–1008CrossRefGoogle Scholar
  25. 25.
    Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Eur Polym J 37:719–728CrossRefGoogle Scholar
  26. 26.
    Singla ML, Shafeeq MM, Kumar M (2009) J Lumin 129:434–438CrossRefGoogle Scholar
  27. 27.
    Sui G, Zhong WH, Yang XP, Yu YH (2008) Mater Sci Eng A 485:524–531CrossRefGoogle Scholar
  28. 28.
    Sae-oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2007) Eur Polym J 43:185–193CrossRefGoogle Scholar
  29. 29.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179–1184CrossRefGoogle Scholar
  30. 30.
    Flory PJ, Renher JJ (1943) J Chem Phys 11:521–526CrossRefGoogle Scholar
  31. 31.
    Sheehan CJ, Bisio AL (1966) Rubber Chem Technol 39:149–192CrossRefGoogle Scholar
  32. 32.
    Panampilly B, Thomas S (2013) Polym Eng Sci 53:1337–1346CrossRefGoogle Scholar
  33. 33.
    Mishra S, Shimpi NG, Mali AD (2011) J Polym Res 18:1715–1724CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kumarjyoti Roy
    • 1
  • Swapan Kumar Mandal
    • 1
  • Md. Najib Alam
    • 1
  • Subhas Chandra Debnath
    • 1
  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations