Journal of Sol-Gel Science and Technology

, Volume 78, Issue 1, pp 218–227 | Cite as

Organogels from different self-assembling novel l-proline dihydrazide derivatives: gelation mechanism and morphology investigations

  • Yang Yu
  • Shuai Wang
  • Liang Jia
  • Miaomiao Zhou
  • Qiaode Pan
  • Yuchun Zhai
  • Chuansheng Wang
Original Paper: sol-gel, hybrids and solution chemistries


A new set of organogelator, l-proline dihydrazide derivatives (designated as Cbz-Pro-AkHz) were synthesized, purified and characterized based on different spectral techniques, such as NMR, FTIR and HPLC–MS analyses. The gelation properties were investigated in oils and various organic solvents. The gel–sol temperature (T GS) was decided by the function of gelator concentration, and the corresponding enthalpies (ΔH g) were extracted. FT-IR spectroscopy studies revealed that the main driving force for the formation of aggregated structure was the hydrogen bonding and van der Waals interaction. Thus, all the xerogels obtained were analyzed using SEM and powder XRD, which revealed different supramolecular network structures in different gels. Possible models have been inferred from XRD for the different molecular packing arrangements within the fibrillar gel networks of the organogels.

Graphical Abstract


Organogelator l-proline dihydrazide Sol–gel Molecular self-assembly 



This research work is funded by the National Natural Science Foundation of China (Nos. 30772670 and 21477082).

Supplementary material

10971_2015_3903_MOESM1_ESM.jpg (66 kb)
Supplementary material 1 (JPEG 66 kb)
10971_2015_3903_MOESM2_ESM.jpg (95 kb)
Supplementary material 2 (JPEG 94 kb)
10971_2015_3903_MOESM3_ESM.jpg (52 kb)
Supplementary material 3 (JPEG 52 kb)


  1. 1.
    Basak S, Nanda J, Banerjee A (2012) J Mater Chem 22:11658–11664CrossRefGoogle Scholar
  2. 2.
    Wu Y, Bai B, Zhang C, Zhang Y, Wang H, Wei Z, Li M (2015) Tetrahedron 71:37–43CrossRefGoogle Scholar
  3. 3.
    Das D, Kar T, Das PK (2012) Soft Matter 8:2348–2365CrossRefGoogle Scholar
  4. 4.
    Minakuchi N, Hoe K, Yamaki D, Ten-No S, Nakashima K, Goto M, Mizuhata M, Maruyama T (2012) Langmuir 28:9259–9266CrossRefGoogle Scholar
  5. 5.
    Grigoriew H, Temeriusz A, Chmielewska D, Gronkowski J, Mirkowska M (2007) J Sol–Gel Sci Technol 44:249–254CrossRefGoogle Scholar
  6. 6.
    Velázquez DG, Orive AG, Creus AH, Luque R, Ravelo ÁG (2011) Org Biomol Chem 9:6524–6527CrossRefGoogle Scholar
  7. 7.
    Wang H, Yang (2012) Z Soft Matter 8: 2344–2347Google Scholar
  8. 8.
    Sravan B, Kamalakar K, Karuna MSL, Palanisamy A (2014) J Sol–Gel Sci Technol 71:372–379CrossRefGoogle Scholar
  9. 9.
    Hideaki T, Masahiro S, Shuji S (2006) Colloids Surf A 273:70–74CrossRefGoogle Scholar
  10. 10.
    Kim JH, Seo M, Kim YJ, Kim SY (2009) Langmuir 25:1761–1766CrossRefGoogle Scholar
  11. 11.
    Sahoo P, Chakraborty I, Dastidar P (2012) Soft Matter 8:2595–2598CrossRefGoogle Scholar
  12. 12.
    Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin I-H, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Soft Matter 8:5595–5602CrossRefGoogle Scholar
  13. 13.
    Svobodová H, Noponen V, Kolehmainen E, Sievänen E (2012) RSC Adv 2:4985–5007CrossRefGoogle Scholar
  14. 14.
    Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) Langmuir 28:9797–9806CrossRefGoogle Scholar
  15. 15.
    Marangoni AG (2012) J Am Oil Chem Soc 89:749–780CrossRefGoogle Scholar
  16. 16.
    Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836CrossRefGoogle Scholar
  17. 17.
    Raghavan SR, Douglas JF (2012) Soft Matter 8:8539–8546CrossRefGoogle Scholar
  18. 18.
    Duan PF, Li YG, Jiang J, Wang TY, Liu MH (2011) Sci China Chem 54:1051–1063CrossRefGoogle Scholar
  19. 19.
    Shimizu T, Masuda M, Minamikawa H (2005) Chem Rev 105:1401–1443CrossRefGoogle Scholar
  20. 20.
    Hirst AR, Smith DK, Feiters MC, Geurts HP, Wright AC (2003) J Am Chem Soc 125:9010–9011CrossRefGoogle Scholar
  21. 21.
    Suzuki M, Hanabusa K (2009) Chem Soc Rev 38:967–975CrossRefGoogle Scholar
  22. 22.
    Suzuki M, Sato T, Shirai H, Hanabusa K (2006) New J Chem 30:1184–1191CrossRefGoogle Scholar
  23. 23.
    Escuder B (2005) Martı´S, Miravet JF. Langmuir 21:6776–6787CrossRefGoogle Scholar
  24. 24.
    Wang K, Jia Q, Han F, Liu H, Li S (2010) Drug Dev Ind Pharm 36:1511–1521CrossRefGoogle Scholar
  25. 25.
    Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Chem Eur J 18:4063–4072CrossRefGoogle Scholar
  26. 26.
    Wang K, Jia Q, Han F, Liu H, Li S (2010) Drug Dev Ind Pharm 36:1511–1521CrossRefGoogle Scholar
  27. 27.
    Motulskya A, Lafleurb M, Couffin-Hoaraua A-C, Hoarauc D, Bouryd F, Benoitd J-P, Lerouxa J-C (2005) Biomaterials 26:6242–6253CrossRefGoogle Scholar
  28. 28.
    Edwards W, Lagadec CA, Smith DK (2011) Soft Matter 7:110–117CrossRefGoogle Scholar
  29. 29.
    Hardy JG, Hirst AR, Smith DK (2012) Soft Matter 8:3399–3406CrossRefGoogle Scholar
  30. 30.
    Carré A, Grel PL, Baudy-Floćh M (2001) Tetrahedron Lett 42:1887–1889CrossRefGoogle Scholar
  31. 31.
    Suzuki M, Saito H, Shirai H, Hanabusa K (2007) New J Chem 31:1654–1660CrossRefGoogle Scholar
  32. 32.
    Suzuki M, Sato T, Shirai H, Hanabusa K (2007) New J Chem 31:69–74CrossRefGoogle Scholar
  33. 33.
    Suzuki M, Nanbu M, Yumoto M, Shirai H, Hanabusa K (2005) New J Chem 29:1439–1444CrossRefGoogle Scholar
  34. 34.
    Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648CrossRefGoogle Scholar
  35. 35.
    Jang W-D, Aida T (2003) Macromolecules 36:8461–8469CrossRefGoogle Scholar
  36. 36.
    Tan C, Su L, Lu R, Xue P, Bao C, Liu X, Zhao Y (2006) J Mol Liq 124:32–36CrossRefGoogle Scholar
  37. 37.
    Jang W-D, Jiang D-L, Aida T (2000) J Am Chem Soc 122:3232–3233CrossRefGoogle Scholar
  38. 38.
    Terech P, Pasquier D, Bordas V, Rossat C (2000) Langmuir 16:4485–4494CrossRefGoogle Scholar
  39. 39.
    Ramakanth I, Patnaik A (2012) J Phys Chem B 116:2722–2729CrossRefGoogle Scholar
  40. 40.
    Xu H, Song J, Tian T, Feng R (2012) Soft Matter 8:3478–3486CrossRefGoogle Scholar
  41. 41.
    Mallia VA, Terech P, Weiss RG (2011) J Phys Chem B 115:12401–12414CrossRefGoogle Scholar
  42. 42.
    Chen Z, Stepanenko V, Dehm V, Prins P, Siebbeles LDA, Seibt J, Marquetand P, Engel V, Würthner F (2007) Chem A Eur J 13:436–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials and MetallurgyNortheastern UniversityShenyangChina
  2. 2.The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical TechnologyShenyangChina

Personalised recommendations