Journal of Sol-Gel Science and Technology

, Volume 77, Issue 3, pp 627–635 | Cite as

Silica aerogel-supported copper catalyst prepared via ambient pressure drying process

  • Taher Yousefi Amiri
  • Jafarsadegh Moghaddas
  • Saeid Rahmani Khajeh
Original Paper


Copper–silica aerogel catalyst was synthesized through the impregnation of silica alcogels by copper precursor and ambient pressure drying of the impregnated alcogels. In this safer and lower energy consumption drying mode for maintaining the gel structure, the solvent exchange and chemical surface modification were done before the drying step. The prepared Cu/SiO2 aerogels were characterized by AAS, XRD, FE-SEM, EDX, TEM, FTIR, BET and BJH techniques. Characterizations showed the complete surface modification, the presence of CuO nanocrystals, the relatively uniform dispersion of copper, the catalysts consisted of the nanoparticles, the homogeneous surface morphology, the large surface area (511–652 m2/g) and the high pore volume (~2.7 cm3 g) and mesoporosity which are the attractive properties of aerogels as catalyst. Also, the activity and selectivity of aerogel catalysts were studied in the hydrogen production process through methanol steam reforming reaction which showed good results.

Graphical Abstract


Copper–silica aerogel catalyst Mesoprosity Sol–gel Impregnation Ambient pressure drying Methanol steam reforming 



The authors are grateful to Dr. E. Fatehifar, the head of Environmental Engineering Research Center of Sahand University of Technology, for supplying the GC equipment.


  1. 1.
    Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernest RD, Eyring EM, Shah N, Huffman GP (2005) Appl Catal A Gen 278:233–238CrossRefGoogle Scholar
  2. 2.
    Dominguez M, Taboada E, Molins E, Llorca J (2008) Catal Today 138:193–197CrossRefGoogle Scholar
  3. 3.
    Choi J, Shin CB, Suh DJ (2008) Catal Commun 9:880–885CrossRefGoogle Scholar
  4. 4.
    Cutrufello MG, Rombi E, Ferino I, Loche D, Corrias A, Casula MF (2011) J Sol–Gel Sci Technol 60:324–332CrossRefGoogle Scholar
  5. 5.
    Martinez S, Meseguer M, Casa L, Rodriguez E, Molins E, Moreno-Manas M, Roig A, Sebastian RM, Vallribera A (2003) Tetrahedron 59:1553–1556CrossRefGoogle Scholar
  6. 6.
    Kobayashi H, Takezawa N, Minochi C (1981) J Catal 69:487–494CrossRefGoogle Scholar
  7. 7.
    Takezawa N, Kobayashi H, Hirose A, Shimokawabe M, Takahashi K (1982) Appl Catal 4:127–134CrossRefGoogle Scholar
  8. 8.
    Kazunari T, Kobayashi H, Takezawa N (1985) Chem Lett 6: 759–762Google Scholar
  9. 9.
    Matsumura Y, Ishibe H (2009) Appl Catal B Environ 86:114–120CrossRefGoogle Scholar
  10. 10.
    Fixman EM, Abello MC, Gorriz OF, Arrua LA (2007) Appl Catal A Gen 319:111–118CrossRefGoogle Scholar
  11. 11.
    Diaz G, Perez-Hernandez R, Gomez-Cortes A, Benaissa M, Mariscal R, Fierro JLG (1999) J Catal 187:1–14CrossRefGoogle Scholar
  12. 12.
    Chen CS, Lin JH, Lai TW, Li BH (2009) J Catal 263:155–166CrossRefGoogle Scholar
  13. 13.
    Jackson SD, Robertson FJ, Willis J (1990) J Mol Catal 43:255–268CrossRefGoogle Scholar
  14. 14.
    Wang S, Li X, Yin Q, Zhu L, Luo Z (2011) Catal Commun 12:1246–1250CrossRefGoogle Scholar
  15. 15.
    Yin A, Guo X, Dai WL, Fan K (2011) Catal Commun 12:412–416CrossRefGoogle Scholar
  16. 16.
    Zhang B, Hui S, Zhang S, Ji Y, Li W, Fang D (2012) J Nat Gas Chem 21:563–570CrossRefGoogle Scholar
  17. 17.
    Zhao S, Yue H, Zhao Y, Wang B, Geng Y, Lv J, Wang S, Gong J, Ma X (2013) J Catal 297:142–150CrossRefGoogle Scholar
  18. 18.
    Bertero NM, Apesteguía CR, Marchi AJ (2008) Appl Catal A Gen 349:100–109CrossRefGoogle Scholar
  19. 19.
    Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) J Catal 277:1–13CrossRefGoogle Scholar
  20. 20.
    Voss B, Schjodt NC, Grunwaldt JD, Anderson SI, Woodley JM (2011) Appl Catal A Gen 402:69–79CrossRefGoogle Scholar
  21. 21.
    Zhu W, Wang L, Liu S, Wang Z (2008) React Kinet Catal Lett 93:93–99CrossRefGoogle Scholar
  22. 22.
    Lambert S, Tcherkassova N, Cellier C, Ferauche F, Heinrichs B, Grange P, Pirard JP (2000) Stud Surf Sci Catal 143:627–635CrossRefGoogle Scholar
  23. 23.
    Marchi AJ, Fierro JLG, Santamaria J, Monzon A (1996) Appl Catal A Gen 142:375–386CrossRefGoogle Scholar
  24. 24.
    Tuysuz H, Galilea JL, Schuth F (2009) Catal Lett 131:49–53CrossRefGoogle Scholar
  25. 25.
    Agarwal AK, Cant NW, Wainwright MS, Trimm DL (1987) J Mol Catal 43:79–92CrossRefGoogle Scholar
  26. 26.
    Brands DS, Poels EK, Bliek A (1999) Appl Catal A Gen 184:279–289CrossRefGoogle Scholar
  27. 27.
    Agarwal AK, Wainwright MS, Trimm DL, Cant NW (1988) J Mol Catal 45:247–254CrossRefGoogle Scholar
  28. 28.
    Huang Z, Cui F, Xue J, Zuo J, Chen J, Xia C (2012) Catal Today 183:42–51CrossRefGoogle Scholar
  29. 29.
    Vasiliadou ES, Eggenhuisen TM, Munnik P, de Jong PE, de Jong KP, Lemonidou AA (2014) Appl Catal B Environ 145:108–119CrossRefGoogle Scholar
  30. 30.
    Li H, Yang M, Zhang X, Yan L, Li J, Qi Y (2013) New J Chem 37:1343–1349CrossRefGoogle Scholar
  31. 31.
    Guerreiro ED, Gorriz OF, Rivarola JB, Arrua LA (1997) Appl Catal A Gen 165:259–271CrossRefGoogle Scholar
  32. 32.
    Tsoncheva T, Venkov T, Dimitrov M, Minchev C, Hadjiivanov K (2004) J Mol Catal A Chem 209:125–134CrossRefGoogle Scholar
  33. 33.
    Jackson SD, Anderson DS, Kelly GJ, Lear T, Lennon D, Watson SR (2003) Top Catal 22:173–182CrossRefGoogle Scholar
  34. 34.
    Lambert S, Cellier C, Gaigneaux EM, Pirard JP, Heinrichs B (2007) Catal Commun 8:1244–1248CrossRefGoogle Scholar
  35. 35.
    Suh MJ, Ihm SK (2010) Top Catal 53:447–454CrossRefGoogle Scholar
  36. 36.
    Ray S, Banerjee B, Bhaumik A, Mukhopadhyay C (2015) Catal Commun 58:97–102CrossRefGoogle Scholar
  37. 37.
    Diz P, Pernas P, Maatougui AE, Tubio CR, Azuaje J, Sotelo E, Guitián F, Gil A, Coelho A (2015) Appl Catal A Gen 502:86–95CrossRefGoogle Scholar
  38. 38.
    Han XQ, Zhang QF, Feng F, Lu CS, Ma L, Li XN (2015) Chin Chem Lett 26:1150–1154CrossRefGoogle Scholar
  39. 39.
    Geravand E, Shariatinia Z, Yaripour F, Sahebdelfar S (2015) Chem Eng Res Des 96:63–77CrossRefGoogle Scholar
  40. 40.
    Agrell J, Birgersson H, Boutonnet M (2002) J Power Sources 106:249–257CrossRefGoogle Scholar
  41. 41.
    Turco M, Cammarano C, Bagnasco G, Moretti E, Storaro L, Talon A, Lenarda M (2009) Appl Catal B Environ 91:101–107CrossRefGoogle Scholar
  42. 42.
    Takezawa N, Iwasa N (1997) Catal Today 36:45–56CrossRefGoogle Scholar
  43. 43.
    Bhagat SD, Kim YH, Ahn YS, Yeo JG (2006) Microporous Mesoporous Mater 96:237–244CrossRefGoogle Scholar
  44. 44.
    Rao AP, Rao AV, Pajonk GM (2007) Appl Surf Sci 253:6032–6040CrossRefGoogle Scholar
  45. 45.
    Wang Z, Liu Q, Yu J, Wu T, Wang G (2003) Appl Catal A Gen 239:87–94CrossRefGoogle Scholar
  46. 46.
    Gurav JL, Rao AV, Rao AP, Nadargi DY, Bhagat SD (2009) J Alloy Compd 476:397–402CrossRefGoogle Scholar
  47. 47.
    Shi F, Wang L, Liu J (2006) Mater Lett 60:3718–3722CrossRefGoogle Scholar
  48. 48.
    Lee CJ, Kim GS, Hyun SH (2002) J Mater Sci 37:2237–2241CrossRefGoogle Scholar
  49. 49.
    Rao AV, Nilson E, Einarsrud MA (2001) J Non-Cryst Solids 296:165–171CrossRefGoogle Scholar
  50. 50.
    Bhagat SD, Kim YH, Suh KH, Ahn YS, Yeo JG, Han JH (2008) Microporous Mesoporous Mater 112:504–509CrossRefGoogle Scholar
  51. 51.
    Silva JB, Mohallem NDS (2011) J Sol–Gel Sci Technol 55:159–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Taher Yousefi Amiri
    • 1
  • Jafarsadegh Moghaddas
    • 2
  • Saeid Rahmani Khajeh
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of ZanjanZanjanIran
  2. 2.Transport Phenomena Research Center, Chemical Engineering FacultySahand University of TechnologyTabrizIran

Personalised recommendations