Journal of Sol-Gel Science and Technology

, Volume 77, Issue 2, pp 371–377 | Cite as

Optical properties of nanostructured Cd10−x Cu x ZnO composite films by sol–gel method

Original Paper


The Cd10−x Cu x ZnO films were prepared for various x = 0.25, 0.50, 0.75 and 1.0 by sol–gel method. The structural and surface morphology of the films was investigated by XRD and atomic force microscopy. The results indicate that the crystallinity of the films is improved with Cu doping. The maximum crystallite size was 23 nm and minimum dislocation density 1.890 × 1013 lines/m2. The study of optical properties revealed that optical band gap firstly decreases with doping and then increase with further increase in doping. The obtained results indicate that the structural and optical properties of Cd10−x Cu x ZnO composite films are controlled with Cd/Cu ratio.

Graphical Abstract


Cd10−xCuxZnO composite films Optical band gap Sol–gel method 



This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (619-130-D1435). The authors, therefore, acknowledge with thanks DSR technical and financial support.


  1. 1.
    Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Adv Funct Mater 14(10):943CrossRefGoogle Scholar
  2. 2.
    Li YZ, Li XM, Gaoa XD (2011) J Alloys Compd 509(26):7193CrossRefGoogle Scholar
  3. 3.
    Phan DT, Chung GS (2011) Appl Surf Sci 257(9):4339CrossRefGoogle Scholar
  4. 4.
    Hembram K, Sivaprahasam D, Rao TN (2011) J Eur Ceram Soc 31(10):1905CrossRefGoogle Scholar
  5. 5.
    Liu K, Sakurai M, Aono M (2011) Sensors Actuators B Chem 157(1):98CrossRefGoogle Scholar
  6. 6.
    Lee CT, Chiu YS, Ho SC, Lee YJ (2011) Sensors 11(5):4648CrossRefGoogle Scholar
  7. 7.
    Xu CX, Sun XW (2003) Appl Phys Lett 83(18):3806CrossRefGoogle Scholar
  8. 8.
    Kim JH, Hong YC, Uhm HS (2007) Chem Phys Lett 443:122CrossRefGoogle Scholar
  9. 9.
    Wang WW, Zhu YJ (2004) Inorg Chem Commun 7:1003CrossRefGoogle Scholar
  10. 10.
    Mahmoud WE, Al-Ghamdi AA (2010) Opt Laser Technol 42:1134–1138CrossRefGoogle Scholar
  11. 11.
    Freeman AJ, Poeppelmeier KR, Mason TO, Chang RPH, Marks TJ (2000) Mater Res Soc Bull 25:45CrossRefGoogle Scholar
  12. 12.
    Yan M, Lane M, Kannewurf CR, Chang RPH (2001) Appl Phys Lett 78:2342CrossRefGoogle Scholar
  13. 13.
    Ghosh PK, Maity R, Chattopadhyay KK (2004) Sol Energy Mater Sol Cells 81:279CrossRefGoogle Scholar
  14. 14.
    Gupta RK, Yakuphanoglu F, Amanullah FM (2011) Phys E 43:1666CrossRefGoogle Scholar
  15. 15.
    Yahia IS, Salem GF, Yakuphanoglu F (2013) Superlattices Microstruct 64:178–184CrossRefGoogle Scholar
  16. 16.
    Chung SM, Shin JH, Lee JM, Ryu MK, Cheong WS, Park SH, Hwang CS, Cho KI (2011) J Nanosci Nanotechnol 11(1):782–786CrossRefGoogle Scholar
  17. 17.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sensors Actuators B Chem 115(1):247–251CrossRefGoogle Scholar
  18. 18.
    Sung NE, Kang SW, Shin HJ, Lee HK, Lee IJ (2013) Thin Solid Films 547:285–288CrossRefGoogle Scholar
  19. 19.
    Mani GK, Rayappan JBB (2014) J Alloys Compd 582:414–419CrossRefGoogle Scholar
  20. 20.
    Wang DY, Zhou J, Liu GZ (2009) J Alloys Compd 487:545–549CrossRefGoogle Scholar
  21. 21.
    Koao LF, Dejene BF, Swart HC (2014) Phys B 439:173–176CrossRefGoogle Scholar
  22. 22.
    Xia CH, Wang F, Hu CL (2014) J Alloys Compd 589:604–608CrossRefGoogle Scholar
  23. 23.
    Lin HT, Chin TS, Shih JC, Lin SH, Hong TM (2004) Appl Phys Lett 85:621CrossRefGoogle Scholar
  24. 24.
    Gupta RK, Serbetçi Z, Yakuphanoglu F (2012) J Alloys Compd 515:96–100CrossRefGoogle Scholar
  25. 25.
    JCPDS—International Centre for Diffraction Data, Card No. 05-0640 (1997)Google Scholar
  26. 26.
    Barret CS, Massalski TB (1980) Structure of metals. Pergamon Press, OxfordGoogle Scholar
  27. 27.
    Dakhel AA (2014) Solid State Sci 31:1–7CrossRefGoogle Scholar
  28. 28.
    Elttayef Abdul-Hussein K, Ajeel Hayder M, Khudiar Ausama I (2013) J Mater Res Technol 2:182–187CrossRefGoogle Scholar
  29. 29.
    Yakuphanoglu F (2012) Sensors Actuators A 173:141–144CrossRefGoogle Scholar
  30. 30.
    Alahmed ZA, Yakuphanoglu F (2013) Microelectron Eng 110:25–28CrossRefGoogle Scholar
  31. 31.
    Green M, Hussain Z (1991) J Appl Phys 69:7788CrossRefGoogle Scholar
  32. 32.
    Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Nat Nanotechnol 3:106CrossRefGoogle Scholar
  33. 33.
    Dakhel AA (2012) J Alloys Compd 539:26–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Physics Department, Sciences of Faculty for GirlsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations