Skip to main content
Log in

Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Here we describe a new platinum catalyst comprised of Pt(0) nanoparticles immobilized on a modified magnetic mesoporous silica support modified with electron donor groups (–N). The material is constituted of controlled pore size (2.4–4.1 nm) and serves as a template for the generation of Pt nanoparticles (2–4 nm). The catalytic activity of the supported Pt nanoparticles was investigated in the catalytic reduction of anthracene under ultra-mild conditions. A complete morphological characterization of the hybrid organic–inorganic composite which confirms the formation of the hybrid material is also given. The catalyst was easily recycled using a small magnet, and it could be reused at least twice without significant loss of its catalytic activity. ICP–OES reveals that after the recyclability study no leaching of Pt or Si could be detected in the products (<0.01 ppm) which confirms the chemical stability of the material allowing it to be used as a potential hydrogenation catalyst for solid–liquid reactions with facile catalyst recovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atabaev TJ, Lee JH, Han DW, Hwang H, Hong NH (2013) Nanotechnology 24:345603–345610

    Article  Google Scholar 

  2. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  Google Scholar 

  3. Jeong GH, Kim EG, Kim SB, Park ED, Kim SW (2011) Micropor Mesopor Mat 144:134–139

    Article  Google Scholar 

  4. Carniato F, Bisio C, Paul G, Gatti G, Bertinetti L, Coluccia S, Marchese L (2010) J Mater Chem 20:5504–5509

    Article  Google Scholar 

  5. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126–131

    Article  Google Scholar 

  6. Xie R, Wang H, Gao P, Xia L, Zhang Z, Zhao T, Sun Y (2015) Appl Catal A Gen 492:93–99

    Article  Google Scholar 

  7. Malay O, Yilgor I, Menceloglu YZ (2013) J Sol–Gel Sci Technol 67:351–361

    Article  Google Scholar 

  8. Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Appl Catal A Gen 338:52–57

    Article  Google Scholar 

  9. Fang Y, Chen Y, Li X, Zhou X, Li J, Tang W, Huang J, Jin J, Ma J (2014) J Mol Catal A Chem 392:16–21

    Article  Google Scholar 

  10. Jacinto MJ, Santos OHCF, Landers R, Kiyohara PK, Rossi LM (2009) Appl Catal B Env 90:688–692

    Article  Google Scholar 

  11. Murugan E, Jebaranjitham N (2015) Chem Eng J 259:266–276

    Article  Google Scholar 

  12. Darwish MSA, Kunz U, Peuker UJ (2012) Appl Polym Sci 129:1806–1811

    Article  Google Scholar 

  13. Qureshi ZS, Sarawade PB, Albert M, D’Elia V, Hedhili MN, Köhler K (2015) Chem Cat Chem 7:635–642

    Google Scholar 

  14. Foppa L, Dupont J, Scheeren C (2014) RSC 4:16583–16588

    Article  Google Scholar 

  15. Lee DH, Jung JY, Jin MJ (2010) RSC 12:2024–2029

    Google Scholar 

  16. Ray S, Bhaumik A, Pramanik M, Mukhopadhyay C (2014) RSC 4:15441–15450

    Article  Google Scholar 

  17. Carlier E, Guyot A, Revillon A (1992) Reac Polym 18:167–171

    Article  Google Scholar 

  18. Rosenholm JM, Lindén M (2007) Chem Mater 19:5023–5034

    Article  Google Scholar 

  19. Ortiz HIM, Mercado YP, Silva JAM, Maldonado YO, Castruita G, Cerda LAG (2013) Ceram Int 40:9701–9707

    Article  Google Scholar 

  20. Tan SY, Ang CY, Li P, Yap QM, Zhao Y (2014) Chem Eur J 20:11276–11282

    Article  Google Scholar 

  21. Niu D, Liu Z, Li Y, Luo X, Zhang J, Gong J, Shi J (2014) Adv Mater 26:4947–4953

    Article  Google Scholar 

  22. Yang P, Gai S, Lin J (2012) Chem Soc Rev 41:3679–3698

    Article  Google Scholar 

  23. Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G (2010) Tetrahedron 66:4318–4325

    Article  Google Scholar 

  24. Liao W, Liu HW, Chen HJ, Chang WY, Chiu KH, Wai CM (2011) Chemosphere 82:573–580

    Article  Google Scholar 

  25. Yuan T, Marshall WD (2005) J Hazard Mater B 126:149–157

    Article  Google Scholar 

  26. Nelkenbaum E, Dror I, Berkowitz B (2007) Chemosphere 68:210–217

    Article  Google Scholar 

  27. Li G, Liu Y, Du H (2015) Org Biomol Chem 13:2875–2878

    Article  Google Scholar 

  28. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891

    Article  Google Scholar 

  29. Kresge CT, Leonowics ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  Google Scholar 

  30. Briggs D, Seah MP (1990) Practical surface analysis, vol 1 Auger and X-ray photoelectron spectroscopy. Willey, New York

    Google Scholar 

  31. Smith GC (1994) Surface analysis by electron spectroscopy. Plenum, New York

    Book  Google Scholar 

  32. Scofield JH (1996) J Electron Spectrosc 8:129–132

    Article  Google Scholar 

  33. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) in: J. Chastian, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp., Minnesota

  34. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012)NIST X-ray photoelectron spectroscopy database, 20, V. 4.1. Retrieved from: http://srdata.nist.gov/xps/Version_his.aspx, last accessed: 04/03/2015 at 14:52

Download references

Acknowledgments

The authors are grateful to Fundação de Amparo a Pesquisa do Estado do Mato Grosso (FAPEMAT) and Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq) for financial support, and indebted to LEFE (Brazil), LME-DEMA (Brazil) and LMC-UnB for the XPS, TEM and BET analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jacinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacinto, M.J., Wizbiki, M., Justino, L.C. et al. Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions. J Sol-Gel Sci Technol 77, 298–305 (2016). https://doi.org/10.1007/s10971-015-3854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3854-6

Keywords

Navigation