Journal of Sol-Gel Science and Technology

, Volume 77, Issue 2, pp 298–305 | Cite as

Platinum-supported mesoporous silica of facile recovery as a catalyst for hydrogenation of polyaromatic hydrocarbons under ultra-mild conditions

  • M. J. Jacinto
  • M. Wizbiki
  • L. C. Justino
  • V. C. Silva
Original Paper


Here we describe a new platinum catalyst comprised of Pt(0) nanoparticles immobilized on a modified magnetic mesoporous silica support modified with electron donor groups (–N). The material is constituted of controlled pore size (2.4–4.1 nm) and serves as a template for the generation of Pt nanoparticles (2–4 nm). The catalytic activity of the supported Pt nanoparticles was investigated in the catalytic reduction of anthracene under ultra-mild conditions. A complete morphological characterization of the hybrid organic–inorganic composite which confirms the formation of the hybrid material is also given. The catalyst was easily recycled using a small magnet, and it could be reused at least twice without significant loss of its catalytic activity. ICP–OES reveals that after the recyclability study no leaching of Pt or Si could be detected in the products (<0.01 ppm) which confirms the chemical stability of the material allowing it to be used as a potential hydrogenation catalyst for solid–liquid reactions with facile catalyst recovery.

Graphical Abstract


Mesoporous materials Anthracene hydrogenation Platinum Metal nanoparticles 



The authors are grateful to Fundação de Amparo a Pesquisa do Estado do Mato Grosso (FAPEMAT) and Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq) for financial support, and indebted to LEFE (Brazil), LME-DEMA (Brazil) and LMC-UnB for the XPS, TEM and BET analyses, respectively.


  1. 1.
    Atabaev TJ, Lee JH, Han DW, Hwang H, Hong NH (2013) Nanotechnology 24:345603–345610CrossRefGoogle Scholar
  2. 2.
    Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714CrossRefGoogle Scholar
  3. 3.
    Jeong GH, Kim EG, Kim SB, Park ED, Kim SW (2011) Micropor Mesopor Mat 144:134–139CrossRefGoogle Scholar
  4. 4.
    Carniato F, Bisio C, Paul G, Gatti G, Bertinetti L, Coluccia S, Marchese L (2010) J Mater Chem 20:5504–5509CrossRefGoogle Scholar
  5. 5.
    Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126–131CrossRefGoogle Scholar
  6. 6.
    Xie R, Wang H, Gao P, Xia L, Zhang Z, Zhao T, Sun Y (2015) Appl Catal A Gen 492:93–99CrossRefGoogle Scholar
  7. 7.
    Malay O, Yilgor I, Menceloglu YZ (2013) J Sol–Gel Sci Technol 67:351–361CrossRefGoogle Scholar
  8. 8.
    Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Appl Catal A Gen 338:52–57CrossRefGoogle Scholar
  9. 9.
    Fang Y, Chen Y, Li X, Zhou X, Li J, Tang W, Huang J, Jin J, Ma J (2014) J Mol Catal A Chem 392:16–21CrossRefGoogle Scholar
  10. 10.
    Jacinto MJ, Santos OHCF, Landers R, Kiyohara PK, Rossi LM (2009) Appl Catal B Env 90:688–692CrossRefGoogle Scholar
  11. 11.
    Murugan E, Jebaranjitham N (2015) Chem Eng J 259:266–276CrossRefGoogle Scholar
  12. 12.
    Darwish MSA, Kunz U, Peuker UJ (2012) Appl Polym Sci 129:1806–1811CrossRefGoogle Scholar
  13. 13.
    Qureshi ZS, Sarawade PB, Albert M, D’Elia V, Hedhili MN, Köhler K (2015) Chem Cat Chem 7:635–642Google Scholar
  14. 14.
    Foppa L, Dupont J, Scheeren C (2014) RSC 4:16583–16588CrossRefGoogle Scholar
  15. 15.
    Lee DH, Jung JY, Jin MJ (2010) RSC 12:2024–2029Google Scholar
  16. 16.
    Ray S, Bhaumik A, Pramanik M, Mukhopadhyay C (2014) RSC 4:15441–15450CrossRefGoogle Scholar
  17. 17.
    Carlier E, Guyot A, Revillon A (1992) Reac Polym 18:167–171CrossRefGoogle Scholar
  18. 18.
    Rosenholm JM, Lindén M (2007) Chem Mater 19:5023–5034CrossRefGoogle Scholar
  19. 19.
    Ortiz HIM, Mercado YP, Silva JAM, Maldonado YO, Castruita G, Cerda LAG (2013) Ceram Int 40:9701–9707CrossRefGoogle Scholar
  20. 20.
    Tan SY, Ang CY, Li P, Yap QM, Zhao Y (2014) Chem Eur J 20:11276–11282CrossRefGoogle Scholar
  21. 21.
    Niu D, Liu Z, Li Y, Luo X, Zhang J, Gong J, Shi J (2014) Adv Mater 26:4947–4953CrossRefGoogle Scholar
  22. 22.
    Yang P, Gai S, Lin J (2012) Chem Soc Rev 41:3679–3698CrossRefGoogle Scholar
  23. 23.
    Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G (2010) Tetrahedron 66:4318–4325CrossRefGoogle Scholar
  24. 24.
    Liao W, Liu HW, Chen HJ, Chang WY, Chiu KH, Wai CM (2011) Chemosphere 82:573–580CrossRefGoogle Scholar
  25. 25.
    Yuan T, Marshall WD (2005) J Hazard Mater B 126:149–157CrossRefGoogle Scholar
  26. 26.
    Nelkenbaum E, Dror I, Berkowitz B (2007) Chemosphere 68:210–217CrossRefGoogle Scholar
  27. 27.
    Li G, Liu Y, Du H (2015) Org Biomol Chem 13:2875–2878CrossRefGoogle Scholar
  28. 28.
    Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891CrossRefGoogle Scholar
  29. 29.
    Kresge CT, Leonowics ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  30. 30.
    Briggs D, Seah MP (1990) Practical surface analysis, vol 1 Auger and X-ray photoelectron spectroscopy. Willey, New YorkGoogle Scholar
  31. 31.
    Smith GC (1994) Surface analysis by electron spectroscopy. Plenum, New YorkCrossRefGoogle Scholar
  32. 32.
    Scofield JH (1996) J Electron Spectrosc 8:129–132CrossRefGoogle Scholar
  33. 33.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) in: J. Chastian, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp., MinnesotaGoogle Scholar
  34. 34.
    Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012)NIST X-ray photoelectron spectroscopy database, 20, V. 4.1. Retrieved from:, last accessed: 04/03/2015 at 14:52

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. J. Jacinto
    • 1
  • M. Wizbiki
    • 1
  • L. C. Justino
    • 1
  • V. C. Silva
    • 2
  1. 1.Instituto de Ciências Humanas, Naturais e SociaisUniversidade Federal de Mato GrossoSinopBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations