Journal of Sol-Gel Science and Technology

, Volume 77, Issue 1, pp 266–277 | Cite as

Sol–gel synthesis and characterization of defect-free alumina films and its application in the preparation of supported ultrafiltration membranes

  • Gajanan B. Kunde
  • Ganapati D. Yadav
Original Paper


Alumina, being an excellent technological material, is selected as the material of synthesis by sol–gel route, as it shows interesting properties having wide array of industrial and engineering applications. In defect-free synthesis of alumina film, the parameters such as concentration of ‘Al’ in the alkoxy-hydrosol of alumina, drying of hydrogel, and calcination of dried film were optimized. The optimized process and parameters were applied in sol–gel synthesis of supported alumina membrane. BET, TGA, FTIR, Raman spectroscopy, and SEM/TEM techniques were used for characterization of alumina membrane. X-ray diffraction studies reveal evolution of crystalline state from amorphous state i.e. from ‘γ’ to ‘α’ phase of alumina. The AFM results of calcined alumina (1100 °C) showed the cylindrical finger-like structures, open at both the ends. Water permeation studies were performed to assess hydrodynamic flux of membrane. The result obtained by N2 adsorption studies has been used to predict water permeability of membrane. It was compared and modelled with experimental results.

Graphical Abstract


Sol–gel Alumina membrane Ceramic Flux Mesoporous 


  1. 1.
    Mallada R, Menéndez M (eds) (2008) Inorganic membranes: synthesis, characterization and applications, vol 13. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Hsieh HP (1996) Inorganic membranes for separation and reaction. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Verweij H (2012) Curr Opin Chem Eng 1:156–162CrossRefGoogle Scholar
  4. 4.
    Nair BN, Ando Y, Taguchi H (2009) Inorganic membranes for energy and environmental applications. Springer, Berlin, pp 287–298CrossRefGoogle Scholar
  5. 5.
    Innocenzi P, Zub IL, Kessler VG (2008) Sol-gel methods for materials processing: focusing on materials for pollution control, water purification, and soil remediation. In: Proceedings of the NATO advanced research workshop on sol-gel approaches to materials for pollution control, water purification and soil remediation, Kyiv, Ukraine, 25–27 October 2007. Springer Science & Business MediaGoogle Scholar
  6. 6.
    Burggraaf AJ, Cot L (eds) (1996) Fundamentals of inorganic membrane science and technology, vol 4. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Bhave RR (1991) Inorganic membranes synthesis, characteristics, and applications. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Hofman-Züter J (1995) Chemical and thermal stability of (modified) mesoporous ceramic membranesGoogle Scholar
  9. 9.
    Guizard C, Julbe A, Larbot A (1992) Key Eng Mat 61:47–56CrossRefGoogle Scholar
  10. 10.
    Hsieh H (1996) Inorganic membranes for separation and reaction. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Larbot A, Fabre J, Guizard C, Cot L (1988) J Membr Sci 39:203–212CrossRefGoogle Scholar
  12. 12.
    Soria R (1995) Catal Today 25:285–290CrossRefGoogle Scholar
  13. 13.
    Chang C, Gopalan R, Lin Y (1994) J Membr Sci 91:27–45CrossRefGoogle Scholar
  14. 14.
    Vercauteren S, Keizer K, Vansant E, Luyten J, Leysen R (1998) J Porous Mater 5:241–258CrossRefGoogle Scholar
  15. 15.
    Julbe A, Farrusseng D, Guizard C (2001) J Membr Sci 181:3–20CrossRefGoogle Scholar
  16. 16.
    Ma C, Chang Y, Ye W et al (2008) J Supercrit Fluids 45:112–120CrossRefGoogle Scholar
  17. 17.
    Deshpande R, Hua D, Smith DM, Brinker CJ (1992) J Non-Cryst Solids 144:32–44CrossRefGoogle Scholar
  18. 18.
    Rao AV, Nilsen E, Einarsrud M (2001) J Non Cryst Solids 296:165–171CrossRefGoogle Scholar
  19. 19.
    Brinkler C, Schere G (1990) The physics and chemistry of sol–gel processingGoogle Scholar
  20. 20.
    Agoudjil N, Kermadi S, Larbot A (2008) Desalination 223:417–424CrossRefGoogle Scholar
  21. 21.
    Ulrich DR (1988) Better ceramics through chemistry. In: Transformation of organometallics into common and exotic materials: design and activation. Springer, NetherlandsGoogle Scholar
  22. 22.
    Gelb LD, Gubbins K (1998) Langmuir 14:2097–2111CrossRefGoogle Scholar
  23. 23.
    Rouquerol J, Rouquerol F, Llewellyn P (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, New YorkGoogle Scholar
  24. 24.
    Ram S (2001) Infrared Phys Technol 42:547–560CrossRefGoogle Scholar
  25. 25.
    Santos PS, Santos HS, Toledo SP (2000) Mater Res 3:104–114CrossRefGoogle Scholar
  26. 26.
    Gonzalo-Delgado L, López-Delgado A, López FA, Alguacil FJ, López-Andrés S (2011) Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag Res 29:127–134CrossRefGoogle Scholar
  27. 27.
    Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Laha T, Balani K, Agarwal A, Patil S, Seal S (2005) Metallurgical Mater Trans A 36:301–309CrossRefGoogle Scholar
  29. 29.
    Arthanareeswaran G, Mohan D, Raajenthiren M (2010) J Membr Sci 350:130–138CrossRefGoogle Scholar
  30. 30.
    Han M, Nam S (2002) J Membr Sci 202:55–61CrossRefGoogle Scholar
  31. 31.
    Zheng Q, Wang P, Yang Y (2006) J Membr Sci 279:230–237CrossRefGoogle Scholar
  32. 32.
    Ma Y, Shi F, Ma J, Wu M, Zhang J, Gao C (2011) Desalination 272:51–58CrossRefGoogle Scholar
  33. 33.
    Banerjee S, De S (2012) J Membr Sci 389:188–196CrossRefGoogle Scholar
  34. 34.
    Panda SR, De S (2013) J Poly Res 20:1–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInstitute of Chemical TechnologyMatunga, MumbaiIndia

Personalised recommendations