Skip to main content
Log in

New kinds of hybrid materials containing covalently bonded Tb3+ (Eu3+) complexes organically modified titania and alumina network via sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work focuses on the construction of a series of novel chemically bonded inorganic–organic rare earth hybrid materials using 3,4-bis(pyridin-4-ylmethoxy)benzoic acid as an organic bridge molecule that can both coordinate with rare earth ions and form an inorganic network with titanium isopropylate and aluminum isopropylate after cohydrolysis and copolycondensation through a sol–gel process. Measurements of the properties of these materials show that the terbium systems present high thermal stability and amorphous structure features. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy-transfer mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sabbatini N, Guardigli M, Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228

    Article  Google Scholar 

  2. Dirr S, Wiese S, Johannes HH, Ammermann D, Bohler A, Grahn W, Kowalsky W (1997) Luminescence enhancement in microcavity organic multilayer structures. Synth Met 91:53–56

    Article  Google Scholar 

  3. Carlos LD, Ferreira RAS, Bermudez VDZ, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater 21:509

    Article  Google Scholar 

  4. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357

    Article  Google Scholar 

  5. Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  Google Scholar 

  6. Matthews LR, Knobbe ET (1993) Luminescence behavior of europium complexes in sol–gel derived host materials. Chem Mater 5:1697–1700

    Article  Google Scholar 

  7. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  Google Scholar 

  8. Carlos LD, Ferreira RAS, Bermudez VD (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–554

    Article  Google Scholar 

  9. Harreld JHA, Esaki G, Stucky D (2003) Low-shrinkage, high hardness, and transparent hybrid coatings: poly(methyl methacrylate) cross-linked with silsesquioxane. Chem Mater 15:3481–3489

    Article  Google Scholar 

  10. Sanchez C, Soler-Illia GJDA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13:3061–3083

    Article  Google Scholar 

  11. Tanner PA, Yan B, Zhang HJ (2000) Preparation and luminescence properties of sol–gel hybrid materials incorporated with europium complexes. J Mater Sci 35:4325

    Article  Google Scholar 

  12. Koslova NI, Viana B, Sanchez C (1993) Rare-earth-doped hybrid siloxane-oxide coatings with luminescent properties. J Mater Chem 3:111

    Article  Google Scholar 

  13. Viana B, Koslova N, Aschehoug P, Sanchez C (1999) Optical properties of neodymium and dysprosium doped hybrid siloxaneoxide coatings. J Mater Chem 5:719–722

    Article  Google Scholar 

  14. Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365

    Article  Google Scholar 

  15. Franville AC, Zambon D, Mahiou R (2000) Luminescence behavior of sol–gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater 12:428–435

    Article  Google Scholar 

  16. Li HR, Liu P, Wang YG, Zhang L, Yu JB, Zhang HJ, Liu BY, Schubert U (2009) Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J Phys Chem C 113:3945–3949

    Article  Google Scholar 

  17. Cuan J, Yan B (2014) Luminescent lanthanide-polyoxometalates assembling zirconia–alumina–titania hybrid xerogels through task-specified ionic liquid linkage. RSC Adv 4:1735–1743

    Article  Google Scholar 

  18. Zhang Q, Sheng Y, Zheng KY, Qin XM, Ma PC, Zou HF (2015) Novel luminescent lanthanide complexes assembling alumina/titania/silica hybrids through 2-phenylmalonic acid linkage. J Non-Cryst Solids 413:34–38

    Article  Google Scholar 

  19. Yan B, Li YJ (2011) Photoactive lanthanide (Eu3+, Tb3+) centered hybrid systems with titania (alumina)-mesoporous silica based hosts. J Mater Chem 21:18454–18461

    Article  Google Scholar 

  20. Saif M, Abdel-Mottaleb MSA (2008) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications. Inorg Chim Acta 360:2863–2874

    Article  Google Scholar 

  21. de Faria EH, Ciuffi KJ, Nassar EJ, Vicente MA, Trujillano R, Calefi PS (2010) Novel reactive amino-compound: tris(hydroxymethyl)aminomethane covalently grafted on kaolinite. Appl Clay Sci 48:516–521

    Article  Google Scholar 

  22. Soares-Santos PCR, Nogueira HIS, Félix V, Drew MGB, Ferreira RAS, Carlos LD, Trindade T (2003) Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chem Mater 15:100

    Article  Google Scholar 

  23. Teotonio ES, Espínola JGP, Brito HF, Malta OL, Oliveria SF, de Foria DLA, Izumi CMS (2002) Influence of the N-[methylpyridyl] acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes. Polyhedron 21:1837

    Article  Google Scholar 

  24. Li Y, Guo M, Yan B (2012) Photoluminescent Eu3+/Tb3+ hybrids from the copolymerization of organically modified silane. Colloid Polym Sci 290:1765–1775

    Article  Google Scholar 

Download references

Acknowledgments

This present work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51272085 and 21171066) and the key technology and equipment of efficient utilization of oil shale resources (No. OSR-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Sheng, Y., Zheng, K. et al. New kinds of hybrid materials containing covalently bonded Tb3+ (Eu3+) complexes organically modified titania and alumina network via sol–gel process. J Sol-Gel Sci Technol 77, 152–159 (2016). https://doi.org/10.1007/s10971-015-3839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3839-5

Keywords

Navigation