Journal of Sol-Gel Science and Technology

, Volume 77, Issue 1, pp 152–159 | Cite as

New kinds of hybrid materials containing covalently bonded Tb3+ (Eu3+) complexes organically modified titania and alumina network via sol–gel process

  • Qiang Zhang
  • Ye Sheng
  • Keyan Zheng
  • Haifeng Zou
Original Paper


This work focuses on the construction of a series of novel chemically bonded inorganic–organic rare earth hybrid materials using 3,4-bis(pyridin-4-ylmethoxy)benzoic acid as an organic bridge molecule that can both coordinate with rare earth ions and form an inorganic network with titanium isopropylate and aluminum isopropylate after cohydrolysis and copolycondensation through a sol–gel process. Measurements of the properties of these materials show that the terbium systems present high thermal stability and amorphous structure features. UV excitation in the organic component resulted in strong green emission from Tb3+ ions due to an efficient ligand-to-metal energy-transfer mechanism.

Graphical Abstract


Lanthanide ions Organic/inorganic hybrids Organically modified alumina/titania Chemical bonding assembly Photoluminescence Sol–gel process 



This present work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51272085 and 21171066) and the key technology and equipment of efficient utilization of oil shale resources (No. OSR-05).


  1. 1.
    Sabbatini N, Guardigli M, Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228CrossRefGoogle Scholar
  2. 2.
    Dirr S, Wiese S, Johannes HH, Ammermann D, Bohler A, Grahn W, Kowalsky W (1997) Luminescence enhancement in microcavity organic multilayer structures. Synth Met 91:53–56CrossRefGoogle Scholar
  3. 3.
    Carlos LD, Ferreira RAS, Bermudez VDZ, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv Mater 21:509CrossRefGoogle Scholar
  4. 4.
    Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357CrossRefGoogle Scholar
  5. 5.
    Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217CrossRefGoogle Scholar
  6. 6.
    Matthews LR, Knobbe ET (1993) Luminescence behavior of europium complexes in sol–gel derived host materials. Chem Mater 5:1697–1700CrossRefGoogle Scholar
  7. 7.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374CrossRefGoogle Scholar
  8. 8.
    Carlos LD, Ferreira RAS, Bermudez VD (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–554CrossRefGoogle Scholar
  9. 9.
    Harreld JHA, Esaki G, Stucky D (2003) Low-shrinkage, high hardness, and transparent hybrid coatings: poly(methyl methacrylate) cross-linked with silsesquioxane. Chem Mater 15:3481–3489CrossRefGoogle Scholar
  10. 10.
    Sanchez C, Soler-Illia GJDA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem Mater 13:3061–3083CrossRefGoogle Scholar
  11. 11.
    Tanner PA, Yan B, Zhang HJ (2000) Preparation and luminescence properties of sol–gel hybrid materials incorporated with europium complexes. J Mater Sci 35:4325CrossRefGoogle Scholar
  12. 12.
    Koslova NI, Viana B, Sanchez C (1993) Rare-earth-doped hybrid siloxane-oxide coatings with luminescent properties. J Mater Chem 3:111CrossRefGoogle Scholar
  13. 13.
    Viana B, Koslova N, Aschehoug P, Sanchez C (1999) Optical properties of neodymium and dysprosium doped hybrid siloxaneoxide coatings. J Mater Chem 5:719–722CrossRefGoogle Scholar
  14. 14.
    Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365CrossRefGoogle Scholar
  15. 15.
    Franville AC, Zambon D, Mahiou R (2000) Luminescence behavior of sol–gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater 12:428–435CrossRefGoogle Scholar
  16. 16.
    Li HR, Liu P, Wang YG, Zhang L, Yu JB, Zhang HJ, Liu BY, Schubert U (2009) Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J Phys Chem C 113:3945–3949CrossRefGoogle Scholar
  17. 17.
    Cuan J, Yan B (2014) Luminescent lanthanide-polyoxometalates assembling zirconia–alumina–titania hybrid xerogels through task-specified ionic liquid linkage. RSC Adv 4:1735–1743CrossRefGoogle Scholar
  18. 18.
    Zhang Q, Sheng Y, Zheng KY, Qin XM, Ma PC, Zou HF (2015) Novel luminescent lanthanide complexes assembling alumina/titania/silica hybrids through 2-phenylmalonic acid linkage. J Non-Cryst Solids 413:34–38CrossRefGoogle Scholar
  19. 19.
    Yan B, Li YJ (2011) Photoactive lanthanide (Eu3+, Tb3+) centered hybrid systems with titania (alumina)-mesoporous silica based hosts. J Mater Chem 21:18454–18461CrossRefGoogle Scholar
  20. 20.
    Saif M, Abdel-Mottaleb MSA (2008) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications. Inorg Chim Acta 360:2863–2874CrossRefGoogle Scholar
  21. 21.
    de Faria EH, Ciuffi KJ, Nassar EJ, Vicente MA, Trujillano R, Calefi PS (2010) Novel reactive amino-compound: tris(hydroxymethyl)aminomethane covalently grafted on kaolinite. Appl Clay Sci 48:516–521CrossRefGoogle Scholar
  22. 22.
    Soares-Santos PCR, Nogueira HIS, Félix V, Drew MGB, Ferreira RAS, Carlos LD, Trindade T (2003) Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chem Mater 15:100CrossRefGoogle Scholar
  23. 23.
    Teotonio ES, Espínola JGP, Brito HF, Malta OL, Oliveria SF, de Foria DLA, Izumi CMS (2002) Influence of the N-[methylpyridyl] acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes. Polyhedron 21:1837CrossRefGoogle Scholar
  24. 24.
    Li Y, Guo M, Yan B (2012) Photoluminescent Eu3+/Tb3+ hybrids from the copolymerization of organically modified silane. Colloid Polym Sci 290:1765–1775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qiang Zhang
    • 1
  • Ye Sheng
    • 1
  • Keyan Zheng
    • 1
  • Haifeng Zou
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations