Journal of Sol-Gel Science and Technology

, Volume 77, Issue 1, pp 119–135 | Cite as

Effect of deposition parameters on the properties of TiO2 thin films prepared by spray pyrolysis

Original Paper


Titanium dioxide (TiO2) thin films had been deposited onto glass substrates at various substrate temperatures by spray pyrolysis technique. X-ray diffraction analysis of deposited TiO2 films exhibited nanocrystalline nature and preferentially oriented along (101) direction. Scanning electron microscopy depicted that the films were uniform and adherent to the glass substrate. The field emission scanning electron microscopy (FE-SEM) films, exhibiting almost spherical shape of nanosized particles, was observed. The size of particles of 9.2 nm was observed from high-resolution transmission electron microscopy analysis. The decreased surface roughness observed in atomic force microscopy was due to the decrease in grain size with increased substrate temperatures. All films exhibited a transmittance of about 80 % in the visible region. The direct band gap values were from 2.1 to 3.6 eV by increasing substrate temperature. The photoluminescence spectra measurements indicated that the intensity of emission peaks significantly varies with substrate temperature. Further, these TiO2 films showed effective antibacterial activity against tested pathogens. Photocatalytic activity of the TiO2 thin film was studied using an organic dye, methylene blue, under solar irradiation.

Graphical Abstract


TiO2 thin films Spray pyrolysis FE-SEM HRTEM Optical properties Antibacterial activity and photocatalytic activity 



The authors thank the UGC Minor Project, New Delhi, India, for the financial support through research Grant no. 41-1398/2012(SR).


  1. 1.
    Mardare Diana, Iacomi Felicia, Cornei Nicoleta, Girtan Mihaela, Luca Dumitru (2010) Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518:4586–4589CrossRefGoogle Scholar
  2. 2.
    Deshmukh HP, Shinde PS, Patil PS (2006) Structural, optical and electrical characterization of spray-deposited TiO2 thin films. Mater Sci Eng, B 130:220–227CrossRefGoogle Scholar
  3. 3.
    Yanag Hisao, Ohoka Yoshihiro, Hishiki Takashi, Ajito Katsuhiro, Fujishima Akira (1997) Characterization of dye-doped TiO2 films prepared by spray-pyrolysis. Appl Surf Sci 113/114:426–443CrossRefGoogle Scholar
  4. 4.
    Bandara HMN, Rajapakse RMG, Murakami K, Kumaraa GRRA, Anuradha Sepalage G (2011) Dye-sensitized solar cell based on optically transparent TiO2 nanocrystalline electrode prepared by atomized spray pyrolysis technique. Electrochim Acta 56:9159–9161CrossRefGoogle Scholar
  5. 5.
    Mielke Randall E, Priester John H, Werlin Rebecca A, Gelb Jeff, Horst Allison M, Orias Eduardo, Holdena Patricia A (2013) Differential growth of and nanoscale TiO2 accumulation in Tetrahymena thermophila by direct feeding versus trophic transfer from Pseudomonas aeruginosa. Appl Environ Microbiol 79:5616–5624CrossRefGoogle Scholar
  6. 6.
    Vishwas M, Sharmar Sudhir Kumar, Narashimha Rao K, Mohan S, Arjuna Gowda KV, Chakradhar RPS (2009) Optical, dielectric and morphological studies of sol–gel derived nanocrystalline TiO2 films. Spectrochim Acta, Part A 74:839–842CrossRefGoogle Scholar
  7. 7.
    Senthilkumar V, Jayachandran M, Sanjeeviraja C (2010) Preparation of anatase TiO2 thin films for dye-sensitized solar cell by DC reactive magnetron sputtering technique. Thin Solid Films 519:991–994CrossRefGoogle Scholar
  8. 8.
    Kumar PS, Raj AD, Mangalraj D, Nataraj D (2008) Growth and characterization of ZnO nanostructured thin films by a two step chemical method. Appl Surf Sci 255:2382–2387CrossRefGoogle Scholar
  9. 9.
    Manurung P, Putri Y, Simanjuntak W, Low IM (2013) Synthesis and characterization of chemical bath deposited TiO2 thin-films. Ceram Int 39:255–259CrossRefGoogle Scholar
  10. 10.
    Moses Ezhil Raj A, Agnes V, Bena Jothy V, Sanjeeviraja C (2010) Low temperature TiO2 rutile phase thin film synthesis by chemical spray pyrolysis [SP] of titanyl acetylacetonate. Mater Sci Semicond Process 13:389–394CrossRefGoogle Scholar
  11. 11.
    Moses Ezhil Raj A, Agnes V, Bena Jothy V, Ravidhas C, Wollschläger Joachim, Suendorf M, Neumann M, Jayachandran M, Sajnjeeviraja C (2010) Spray deposition and property analysis of anatase phase titania (TiO2) nanostructures. Thin Solid Films 519:129–135CrossRefGoogle Scholar
  12. 12.
    Bauer AW, Kirby WMM, Sherris JC, Turek M (1996) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Phothol 45:493–496Google Scholar
  13. 13.
    Benny Joseph KG, Gopchandran PV, Thomas Peter Koshy, Vaidyan VK (1999) A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties. Mater Chem Phys 58:71–77CrossRefGoogle Scholar
  14. 14.
    Agashe C, Takwale MG, Bhide VG, Mahamuni S, Kulkarni SK (1999) Effect of Sn incorporation on the growth mechanism of sprayed SnO2 films. J Appl Phys 70:7283Google Scholar
  15. 15.
    Samet L, Ben Nasseur R, Chtourou J, March K, Stephan O (2013) Heat treatment effect on the physical properties of cobalt doped TiO2 sol–gel materials. Mater Charact 85:1–12CrossRefGoogle Scholar
  16. 16.
    Malliga P, Pandiarajan J, Prithivikumaran N, Neyvasagam K (2014) Influence of film thickness on structural and optical properties of sol–gel spin coated TiO2 thin film. J Appl Phys 6:22–28Google Scholar
  17. 17.
    Williamson GB, Smallman RC (1956) Philos Magn 1:34CrossRefGoogle Scholar
  18. 18.
    Rao TP, Kumar MCS, Safarulla A, Ganesan V, Barman SR, Sanjeeviraja C (2010) Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Phys B 405:2226–2231CrossRefGoogle Scholar
  19. 19.
    Mariappan R, Ponnuswamy V, Suresh P (2012) Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct 52:500–513CrossRefGoogle Scholar
  20. 20.
    Sabihdl-Obaidi Saramas, Yousif Ali Ahmed (2013) Synthesis of nanostructure TiO2 thin films by pulsed laser deposition (PLD) and the effect of annealing temperature on structural and morphological properties. J Pure Appl Sci 26:3Google Scholar
  21. 21.
    Anil Kumar G, Ramana Reddy MV, Reddy Katta Narasimha (2013) Structural, optical and electrical characteristics of nanostructured ZnO thin films with various thickness deposited by RF magnetron sputtering. Struct Res J Phys Sci 1:17–23Google Scholar
  22. 22.
    Fotsa Ngaffo F, Caricato AP, Fernandez M, Martino M, Romano F (2007) Structural properties of single and multilayer ITO and TiO2 films deposited by reactive pulse laser ablation deposition technique. Appl Surf Sci 253:6508–6511CrossRefGoogle Scholar
  23. 23.
    Linhua L, Shen H, Li X, Zhu R (2010) Influence of annealing temperature on the photoluminescence property of ZnO thin film covered by TiO2 nanoparticles. J Lumin 130:2123–2127CrossRefGoogle Scholar
  24. 24.
    Yilmaz S, Parlak M, Ozcan S, Altunbas M, McGlynn E, Bacaksiz E (2011) Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method. Appl Surf Sci 257:9293–9298CrossRefGoogle Scholar
  25. 25.
    Weng Wenjian, Ma Ming, Piyi Du, Zhao Gaoling, Shen Ge, Wang Jianxun, Han Gaorong (2005) Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition. Surf Coat Technol 198:340–344CrossRefGoogle Scholar
  26. 26.
    Keskenler EF, Turgut G, Doğan S (2012) Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium. Superlattices Microstruct 52:107–115CrossRefGoogle Scholar
  27. 27.
    Ergin Bengisu, Ketenci Elif, Atay Ferhunde (2009) Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique. Int J Hydrog Energy 34:5249–5254CrossRefGoogle Scholar
  28. 28.
    Raut NC, Mathews Tom, Chandramohan P, Srinivasan MP, Dash S, Tyagi AK (2011) Effect of temperature on the growth of TiO2 thin films synthesized by spray pyrolysis: structural, compositional and optical properties. Mater Res Bull 46:2057–2063CrossRefGoogle Scholar
  29. 29.
    Vijayalakshmi K, Karthick K, Gopalakrishna D (2013) Influence of annealing on the structural, optical and photoluminescence properties of ZnO thin films for enhanced H2 sensing application. Ceram Int 39:4749–4756CrossRefGoogle Scholar
  30. 30.
    Prasada Rao T, Santhoshkumar MC (2009) Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl Surf Sci 255:4579–4584CrossRefGoogle Scholar
  31. 31.
    Islam MR, Podder J (2009) Optical properties of ZnO Nano fibre thin films grown by spray pyrophysis of zinc acetate precursor. J Cryst Res Tech. 44:286–292CrossRefGoogle Scholar
  32. 32.
    Al Samar R, Ferblantier G, Mailly F, Gall-Borrut P, Foucaran A (2005) Effect of annealing on the electrical and optical properties of electron evaporated ZnO thin films. Thin Solid Films 473:49–53CrossRefGoogle Scholar
  33. 33.
    Farag M, Cavas M, Yakuphanoglu F, Amanullah FM (2011) Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique. J Alloys Compd 509:900–7908Google Scholar
  34. 34.
    Kaid MA, Ashour A (2007) Preparation of ZnO-doped Al films by spray pyrolysis technique. Appl Surf Sci 253:3029–3033CrossRefGoogle Scholar
  35. 35.
    Nehru LC, Umadevi M, Sanjeeviraja C (2012) Studies on structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis method. Int J Mat Eng 2:12–17Google Scholar
  36. 36.
    Tarwal NL, Shinde VV, Kamble AS, Jadhav PR, Patil DS, Patil VB, Patil PS (2011) Photoluminescence and photoelectrochemical properties of nanocrystalline ZnO thin films synthesized by spray pyrolysis technique. Appl Surf Sci 257:10789–10794CrossRefGoogle Scholar
  37. 37.
    Ratheesh Kumar PM, Sudha Kartha C, Vijayakumar KP, Singh F, Avasthi DK (2005) Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films. Mater Sci Eng, B 117:307–312CrossRefGoogle Scholar
  38. 38.
    Suwanboon Sumetha (2008) The properties of nanostructured ZnO Thin film via sol–gel coating. Naresoan Univ J 16:173–180Google Scholar
  39. 39.
    Moterio DR, Group LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110CrossRefGoogle Scholar
  40. 40.
    Sun Q, Caia X, Li J, Zheng M, Chen Z, Yu CP (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp 444:226–231CrossRefGoogle Scholar
  41. 41.
    Geethalakshmi L, Sarada DVL (2013) Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthemadecandra L. Ind Crops Prod 51:107–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsAnnamalai UniversityAnnamalai NagarIndia

Personalised recommendations