Skip to main content

Advertisement

Log in

Photocatalytic hydrogen production from aqueous methanol solution using Pt nanocatalysts supported on mesoporous TiO2 hollow shells

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 hollow shells were synthesized by a conventional templating method which combines sol–gel coating and selective etching of the silica cores. Pt nanocatalysts were supported on these mesoporous TiO2 hollow shells varying the metal loading: 0, 1, 3, 5 and 7 % at calcination temperatures of 500 or 900 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, and nitrogen physisorption. The mesostructures were observed by TEM and HRTEM to be smaller than 300 nm and the TiO2 shells had an average wall thickness of 40 nm. X-ray diffraction spectra revealed a pure anatase phase in samples calcined at 900 °C, whereas those calcined at 500 °C were amorphous. Under white light (UV and Visible) illumination, photocatalytic hydrogen production was measured from the samples suspended in an aqueous solution of methanol and compared to TiO2 (P25, Degussa) used as a reference. The highest hydrogen yields were achieved with the crystalline TiO2 hollow shells annealed at 900 °C containing 1 or 7 wt% Pt. The amorphous samples were observed to be inactive, at all metal loadings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15735

    Article  Google Scholar 

  2. Armaroli N, Balzani V (2007) Angew Chem Int Ed 46:52–66

    Article  Google Scholar 

  3. Acar C, Dincer I, Zamfirescu C (2014) Int J Energy Res 38:1903–1920

    Article  Google Scholar 

  4. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  Google Scholar 

  5. Yang J, Wang D, Han H, Li C (2013) Acc Chem Res 46:1900–1909

    Article  Google Scholar 

  6. Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Int J Hydrog Energy 35:7087–7097

    Article  Google Scholar 

  7. Ashokkumar M (1998) Int J Hydrog Energy 23:427–438

    Article  Google Scholar 

  8. Hagfeldt A, Graetzel M (1995) Chem Rev 95:48–499

    Article  Google Scholar 

  9. Liu X, Li J, Zhang Y, Huang J (2015) J Chem Eur 21:7345–7349

    Article  Google Scholar 

  10. Kochuveedu ST, Jang YH, Kim DH (2013) Chem Soc Rev 42:8467–8493

    Article  Google Scholar 

  11. Patterson JD, Bailey BC (2007) Solid-state physics—introduction to the theory. Springer, Berlin

    Google Scholar 

  12. Reiss P, Protiere M, Li L (2009) Small 5:154–168

    Article  Google Scholar 

  13. Joo JB, Lee I, Dahl M, Dae Moon G, Zaera F, Yin Y (2013) Adv Funct Mater 23:4246–4254

    Article  Google Scholar 

  14. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y (2012) Adv Funct Mater 22:166–174

    Article  Google Scholar 

  15. Bian Z, Zhu J, Cao F, Lu Y, Li H (2009) Chem Commun 25:3789–3791

    Article  Google Scholar 

  16. Wilson GJ, Matijasevich AS, Mitchell G, Schulz DR, Will JC (2006) Langmuir 22:2016–2027

    Article  Google Scholar 

  17. Chen L, Zhao W, Jiao Y, He X, Wang J, Zhang Y (2007) Spectrochim Acta Part A 68:484–490

    Article  Google Scholar 

  18. Yang J, Lee JY, Chen LX, Too H-P (2005) J Phys Chem B 109:5468–5472

    Article  Google Scholar 

  19. Tauc J, Grigorovichi R, Vancu A (1966) Phys Status Solidi B 15:627–637

    Article  Google Scholar 

  20. Lin W-C, Yang W-D, Huang I-L, Wu T-S, Chung Z-J (2009) Energy Fuels 23:2192–2196

    Article  Google Scholar 

  21. Bacsa RR, Kiwi J (1998) Appl Catal B 16:19–29

    Article  Google Scholar 

  22. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82–86

    Article  Google Scholar 

  23. Jakob M, Levanon H, Kamat PV (2003) Nano Lett 3:353–358

    Article  Google Scholar 

  24. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950

    Article  Google Scholar 

  25. Burgeth G, Kisch H (2002) Coord Chem Rev 230:41–47

    Article  Google Scholar 

  26. Wood A, Giersig M, Mulvaney P (2001) J Phys Chem B 105:8810–8815

    Article  Google Scholar 

  27. Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485

    Article  Google Scholar 

  28. Cojocaru B, Neaţu Ş, Sacaliuc-Pârvulescu E, Lévy F, Pârvulescu VI, Garcia H (2011) Appl Catal B 107:140–149

    Article  Google Scholar 

  29. Bumajdad A, Madkour M (2014) Phys Chem Chem Phys 16:7146–7158

    Article  Google Scholar 

  30. Tian Y, Tatsuma T (2005) J Am Chem Soc 127:7632–7637

    Article  Google Scholar 

  31. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) J Am Chem Soc 129:14852–14853

    Article  Google Scholar 

  32. Sreethawong T, Laehsalee S, Chavadej S (2009) Catal Commun 10:538–543

    Article  Google Scholar 

  33. Mankidy BD, Joseph B, Gupta VK (2013) Nanotechnology 24:405402

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports of Consejo Nacional de Ciencia y Tecnología 166354, 251151, 153356, SIP 20150030 and SIP 20150621. FPH is grateful for Consejo Nacional de Ciencia y Tecnología and BEIFI fellowships. We thank to Luis Rendón (TEM and HRTEM), Marcela Guerrero Cruz (XRD) and Mario García (SEM/EDS) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Plascencia-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plascencia-Hernández, F., Valverde-Aguilar, G., Singh, N. et al. Photocatalytic hydrogen production from aqueous methanol solution using Pt nanocatalysts supported on mesoporous TiO2 hollow shells. J Sol-Gel Sci Technol 77, 39–47 (2016). https://doi.org/10.1007/s10971-015-3826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3826-x

Keywords

Navigation