Skip to main content
Log in

Taguchi approach-assisted optimization of spraying in non-solvent process for preparation of potassium perchlorate nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, Taguchi robust design as a statistical route was utilized to optimize the variables of spraying in non-solvent process in order to achieve KClO4 nanoparticles. The experimental factors of the spraying in non-solvent technique, which may be effective in KClO4 particle size, were optimized efficiently via Taguchi method. The procedure operating conditions, i.e., KClO4 concentration, solvent ratio, non-solvent identity, and spray steps, were considered at triple levels. The role of these operating conditions on the size of resulted KClO4 particles was evaluated quantitatively by analysis of variance (ANOVA). It was found that the particle size of KClO4 prepared by spraying in non-solvent technique might be adjusted efficiently by tuning the main parameters at the corresponding optimum level. Moreover, the optimal conditions for the preparing of KClO4 nanoparticles via the studied method were proposed. The ANOVA exhibited that 3 % (w/v) as KClO4 concentration, CHCl3 as type of non-solvent, solvent to non-solvent ratio of 1:6, and single-step spraying are optimal conditions for the production of KClO4 nanoparticles by spraying in non-solvent. Experimental data revealed that at optimum conditions of the process, the average particle size of produced KClO4 is about 41 nm. Meantime, KClO4 nanoparticles were prepared by supercritical carbon dioxide anti-solvent process for comparison. It was found that the size of the produced KClO4 particles is about 55 nm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fathollahi M, Pourmotazavi SM, Hosseini SG (2004) The effect of the particle size of potassium chlorate in pyrotechnic compositions. Combust Flame 138:304–306

    Article  Google Scholar 

  2. Pourmortazavi SM, Fathollahi M, Hajimirsadeghi SS, Hosseini SG (2006) Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG. Thermochim Acta 443:129–131

    Article  Google Scholar 

  3. Hosseini SG, Pourmortazavi SM, Hajimirsadeghi SS (2005) Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate. Combust Flame 141:322–326

    Article  Google Scholar 

  4. Teipel U, Krober H, Krause H (2001) Formation of energetic materials using supercritical fluids. J Supercrit Fluids 26:168–173

    Google Scholar 

  5. Bayat Y, Zeynali V (2011) Preparation, Characterization of nano-CL-20 explosive. J Energ Mater 29:281–291

    Article  Google Scholar 

  6. Okmar A, Nafday RP, Brandon LW, Janson H (2006) Patterning high explosive at the nanoscale. Propellants Explos Pyrotech 31:376

    Article  Google Scholar 

  7. Sivabalan R, Gore GM, Nair UR, Saikia A, Venugopalan S, Gandhe BR (2007) Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J Hazard Mater 139:199–203

    Article  Google Scholar 

  8. Wang B, Yu-cun LLM (2005) Study on the influence of particle size on the impact sensitivity of HMX. North China Inst Technol 26:35

    Google Scholar 

  9. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires”. Nano Lett 3:667

    Article  Google Scholar 

  10. Behboudnia M, Khanbabaee B (2007) Investigation of nano crystalline copper sulfide Cu7S4 fabricated by ultrasonic radiation technique. Cryst Growth 27:158–304

    Article  Google Scholar 

  11. Niu J, Sha J, Yang D (2004) Sulfide-assisted growth of silicon nano-wires by thermal evaporation of sulfur powders. Phys E 24:278

    Article  Google Scholar 

  12. Liu H, Li Y, Lou H, Fang H, Li H, Xiao S, Shi Z, Zhu D (2003) Simple synthesis of Cds nanorods by sulfur powders. Synth Met 841:135–136

    Google Scholar 

  13. Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–185

    Article  Google Scholar 

  14. Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7:421

    Article  Google Scholar 

  15. Bayat Y, Pourmortazavi SM, Ahadi H, Iravani H (2013) Taguchi robust design to optimize supercritical carbon dioxide anti-solvent process for preparation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanoparticles. Chem Eng J 230:432–438

    Article  Google Scholar 

  16. Gou L, Murphy CG (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3:231–239

    Article  Google Scholar 

  17. Shamsipur M, Pourmortazavi SM, Roushani M, Kohsari I, Hajimirsadeghi SS (2011) Novel approach for electrochemical preparation of sulfur nanoparticles. Microchim Acta 173:445–451

    Article  Google Scholar 

  18. Zhong J, Shen Z, Yang Y, Chen J (2005) Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. Int J Pharm 301:286–289

    Article  Google Scholar 

  19. Arkhireeva A, Hay JN, Manzano JM, Masters H, Oware W, Shaw SJ (2004) Synthesis of organic–inorganic hybrid particles by sol–gel chemistry. Sol Gel Sci Technol 31:31–39

    Article  Google Scholar 

  20. Bund RK, Pandit AB (2007) Sonocrystallization: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143

    Article  Google Scholar 

  21. Pourmortazavi SM, Hajimirsadeghi SS (2005) Application of supercritical carbon dioxide in energetic materials processes: a review. Ind Eng Chem Res 44:6523–6533

    Article  Google Scholar 

  22. Guo Z, Zang M, Li H, Wang J, Kougoulos E (2005) Effect of ultrasound on anti-solvent crystallization process. Cryst Growth 273:555–562

    Article  Google Scholar 

  23. Zhao X, Zu Y, Li Q, Wang M, Zu B, Zhang X, Jiang R, Zu C (2010) Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J Supercrit Fluids 51:412–419

    Article  Google Scholar 

  24. Lee B-M, Kim DS, Lee Y-H, Lee B-C, Kim H-S, Kim H, Lee Y-W (2011) Preparation of submicron-sized RDX particles by rapid expansion of solution using compressed liquid dimethyl ether. J Supercrit Fluids 57:251–258

    Article  Google Scholar 

  25. Chen Y-M, Lin P-C, Tang M, Chen Y-P (2010) Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide. J Supercrit Fluids 52:175–182

    Article  Google Scholar 

  26. Zhao C, Wang L, Zu Y, Li C, Liu S, Yang L, Zhao X, Zu B (2011) Micronization of Ginkgo biloba extract using supercritical antisolvent process. Powder Technol 209:73–80

    Article  Google Scholar 

  27. Braeuer A, Dowy S, Torino E, Rossmann M, Luther SK, Schlueckerd E, Leipertz A, Reverchon E (2011) An analysis of the supercritical antisolvent mechanisms governing particles precipitation and morphology by in situ laser scattering techniques. Chem Eng J 173:258–266

    Google Scholar 

  28. De Marco I, Reverchon E (2011) Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. J Supercrit Fluids 58:295–302

    Article  Google Scholar 

  29. Taguchi G (1987) Systems of experimental design, vol 1–2. Kraus, New York

    Google Scholar 

  30. Roy RK (1990) A primer on the Taguchi method. Van Nostrand Reinhold, NewYork

    Google Scholar 

  31. Bayat Y, Pourmortazavi SM, Iravani H, Ahadi H (2012) Statistical optimization of supercritical carbon dioxide antisolvent process for preparation of HMX nanoparticles. J Supercrit Fluids 72:248–254

    Article  Google Scholar 

  32. Rahimi-Nasrabadi M, Pourmortazavi SM, Davoudi Dehaghani AA, Hajimirsadeghi SS, Zahedi MM (2013) Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. Cryst Eng Commun 15:4077

    Article  Google Scholar 

  33. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York

    Google Scholar 

  34. Pourmortazavi SM, Rahimi-Nasrabadi M, Fazli Y, Mohammad-Zadeh M (2015) Taguchi method assisted optimization of electrochemical synthesis and structural characterization of copper tungstate nanoparticles. Int J Refract Met Hard Mater 51:29–34

    Article  Google Scholar 

  35. Rahimi-Nasrabadi M, Pourmortazavi SM, Khalilian-Shalamzari M (1083) Facile chemical synthesis and structure characterization of copper molybdate nanoparticles. J Mol Struct 2015:229–235

    Google Scholar 

  36. Bayat Y, Eghdamtalab M, Zeynali V (2010) Control of the particle size of submicron HMX explosive by spraying in non-solvent. J Energ Mater 28:273–284

    Article  Google Scholar 

  37. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fareghi Alamdari R, Rahimi-Nasrabadi M (2008) Determination of the optimal conditions for synthesis of silver oxalate nanorods. Chem Eng Technol 31:1532–1535

    Article  Google Scholar 

  38. Bayat Y, Hajimirsadeghi SS, Pourmortazavi SM (2011) Statistical optimization of reaction parameters for the synthesis of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza isowurtzitane. Org Process Res Dev 15:810–816

    Article  Google Scholar 

  39. Sharma P, Vermab A, Sidhub RK, Pandey OP (2006) Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design. J Magn Magn Mater 307:157–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seied Mahdi Pourmortazavi or Somayeh Mirsadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmortazavi, S.M., Zaree, A. & Mirsadeghi, S. Taguchi approach-assisted optimization of spraying in non-solvent process for preparation of potassium perchlorate nanoparticles. J Sol-Gel Sci Technol 76, 510–518 (2015). https://doi.org/10.1007/s10971-015-3801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3801-6

Keywords

Navigation