Journal of Sol-Gel Science and Technology

, Volume 76, Issue 1, pp 43–49 | Cite as

Luminescence properties of Lu3M5O12:Eu3+ (M = Al, Ga) and effects of Bi3+ co-dopant

  • Xian-zhong Zhu
  • Cheng-lin Chu
  • Paul K. Chu
Original Paper


The Eu3+-doped and Eu3+, Bi3+ co-doped Lu3M5O12 (LuMG where M = Al, Ga) phosphors are synthesized by spray pyrolysis, and the crystal structure, micromorphology, luminescence properties and effects of Bi3+ co-dopant are investigated. X-ray diffraction reveals that the crystal structures of the matrices do not change after partial replacement of Lu3+ by Eu3+ and Bi3+. The phosphors exhibit the same spherical micromorphology without agglomeration and particle size distribution with a typical diameter of about 0.7 μm. The emission and excitation spectra show transitions associated with the Eu3+ 4f configurations. 7F1 energy level splitting of Eu3+ in Lu3Al5O12:Eu and stronger luminescence of Lu3Ga5O12:Eu are observed, and the quenching concentrations of Eu3+ in Lu3Al5O12:Eu and Lu3Ga5O12:Eu are 6 and 10 mol% with respect to Lu3+, respectively. Introduction of Bi3+ enhances the emission of Eu3+ accompanied by the transition emission of Bi3+.

Graphical Abstract


Lu3Al5O12:Eu Lu3Ga5O12:Eu Spray pyrolysis Luminescence properties Energy transfer 



The work was financially supported by the Natural Science Fund Project in Jiangsu Province of China (BK2012869) as well as Guangdong—Hong Kong Technology Cooperation Funding Scheme (TCFS) GHP/015/12SZ.


  1. 1.
    Paula FSP, Marcela GM, Lilian RA, Evelisy CON, Alexandre C, Katia JC, Paulo SC, Eduardo JN (2010) J Lumin 130:488–493CrossRefGoogle Scholar
  2. 2.
    Gawande AB, Sonekar RP, Omanwar SK (2014) Int J Opt 2014:418459CrossRefGoogle Scholar
  3. 3.
    Zhang JJ, Ning JW, Liu XJ, Pan YB, Huang LP (2003) Mater Lett 57:3077–3081CrossRefGoogle Scholar
  4. 4.
    Potdevin A, Chadeyron G, Boyer D, Mahiou R (2006) J Non-Cryst Solids 352:2510–2514CrossRefGoogle Scholar
  5. 5.
    Pan YX, Wu MM, Su Q (2004) Mater Sci Eng B 106:251–256CrossRefGoogle Scholar
  6. 6.
    Chen L, Lin CC, Yeh CW, Liu RS (2010) Materials 3:2172–2195CrossRefGoogle Scholar
  7. 7.
    Xia GD, Zhou SM, Zhang JJ, Xu J (2005) J Cryst Growth 279:357–362CrossRefGoogle Scholar
  8. 8.
    Sharma PK, Dutta RK, Pandey AC (2012) J Nanoparticle Res 14:731–740CrossRefGoogle Scholar
  9. 9.
    Hyun KY, Jung HJ (2010) J Phys Chem C 114:226–230CrossRefGoogle Scholar
  10. 10.
    Sharma PK, Kumar M, Singh K, Pandey AC, Singh VN (2009) J Appl Phys 105:034309CrossRefGoogle Scholar
  11. 11.
    Zhou YH, Lin J, Yu M, Han SM, Wang SB, Zhang HJ (2003) Mater Res Bull 38:1289–1299CrossRefGoogle Scholar
  12. 12.
    Xu XG, Chen J, Deng SZ, Xu NS (2010) J Vac Sci Technol B 28:490–494CrossRefGoogle Scholar
  13. 13.
    Venkatramu V, León Luis SF, Lozano-Gorrín AD, Jyothi L, Babu P, Rodríguez-Mendoza UR, Jayasankar CK, Muñoz-Santiuste JE, Lavín V (2012) J Nanosci Nanotechnol 12:4495–4501CrossRefGoogle Scholar
  14. 14.
    Wang LX, Yin M, Guo CX, Zhang WP (2010) J Rare Earth 28:16–21CrossRefGoogle Scholar
  15. 15.
    Park WJ, Yoon SG, Yoon DH (2006) J Electroceram 17:41–44CrossRefGoogle Scholar
  16. 16.
    Huang JL, Zhou LY, Liang ZP, Gong FZ, Han JP, Wang RF (2010) J Rare Earth 28:356–360CrossRefGoogle Scholar
  17. 17.
    Jung DS, Park SB, Kang YC (2010) Korean J Chem Eng 27:1621–1645CrossRefGoogle Scholar
  18. 18.
    Kwon Y, Lee JK, Kim SJ, Nahm S, Park K (2008) J Nanosci Nanotechnol 8:5499–5502CrossRefGoogle Scholar
  19. 19.
    Dorenbos P (2013) J Lumin 134:310–318CrossRefGoogle Scholar
  20. 20.
    Filippo M, Vincenzo B, Silvia G, Paolo G, Monica D, Adolfo S, Marco B (2006) J Phys Chem B 110:6561–6568CrossRefGoogle Scholar
  21. 21.
    Chen L, Jiang Y, Yang GT, Zhang GB, Xin XL, Kong DX (2009) J Rare Earth 27:312–315CrossRefGoogle Scholar
  22. 22.
    Huang XY, Zhang QY (2010) J Appl Phys 107:063505CrossRefGoogle Scholar
  23. 23.
    Lang RJ (1962) J Acoust Soc Am 34:6–8CrossRefGoogle Scholar
  24. 24.
    Yan B, Xiao XZ (2010) Nanoscale Res Lett 5:1962–1969CrossRefGoogle Scholar
  25. 25.
    Oomen EWJL, Van Dongen AMA (1989) J Non-Cryst Solids 111:205–213CrossRefGoogle Scholar
  26. 26.
    Shi Q, Wang CZ, Zhang D, Li SH, Zhang LM, Wang WJ, Zhang JY (2012) Thin Solid Films 520:6845–6849CrossRefGoogle Scholar
  27. 27.
    Mhlongo GH, Dhlamini MS, Swart HC, Ntwaeaborwa OM, Hillie KT (2011) Opt Mater 33:1495–1499CrossRefGoogle Scholar
  28. 28.
    Blasse G (1969) Philips Res Rep 24:131–144Google Scholar
  29. 29.
    Zhu NF, Li YX, Yu XF (2008) Chin Phys Lett 25:703–706CrossRefGoogle Scholar
  30. 30.
    Dexter DL (1953) J Chem Phys Lett 21:836–850Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MicroelectronicsNanjing College of Information TechnologyNanjingChina
  2. 2.School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  3. 3.Department of Physics and Materials ScienceCity University of Hong KongKowloonChina

Personalised recommendations