Journal of Sol-Gel Science and Technology

, Volume 75, Issue 2, pp 460–474 | Cite as

Polydicyclopentadiene aerogels from first- versus second-generation Grubbs’ catalysts: a molecular versus a nanoscopic perspective

  • Abhishek Bang
  • Dhairyashil Mohite
  • Adnan Malik Saeed
  • Nicholas Leventis
  • Chariklia Sotiriou-Leventis
Original Paper


Polydicyclopentadiene (pDCPD) aerogels obtained via ring-opening metathesis polymerization using the first-generation Grubbs’ catalyst (GC-I) are well-shaped monoliths; those obtained from the second-generation Grubbs’ catalyst (GC-II) were severely deformed. At lower densities, materials from either catalyst consisted of entangled nanofibers, turning into random aggregates of nanoparticles as density increased. Nanoscopically, all those microstructures consisted of similar mass-fractal aggregates of secondary particles (by rheology), which in turn are closely packed assemblies of primary particles (by SAXS). Soluble oligomers along gelation were observed only with GC-II (by 1H NMR); nevertheless, all monomers were eventually incorporated in the skeletal framework of both materials (gravimetrically). The extent of cross-linking by olefin addition (via solid-state 13C NMR) was in the same range with both catalysts (19–25 % of pendant cyclopentenes). The only significant difference in the two kinds of aerogels was in the cis versus trans configuration of the polymeric backbone (by IR and solid-state 13C NMR). Deformation of GC-II-derived aerogels has been rectified by filling the empty space among primary particles (about 36 % v/v) with a hard polymer. Those aerogels have the same mechanical properties with those derived from GC-I, meaning that deformation is due to rearrangement at a level below the load-bearing macroporous network. Thus, a self-consistent model for deformation calls for primary particles of mostly trans pDCPD (via GC-I) being more rigid and more difficult to squeeze; thus, higher mass-fractal aggregates of secondary particles do not penetrate into the empty space of one another. Conversely, primary particles of more malleable cis/trans pDCPD (via GC-II) are squeezable, allowing higher aggregates to partially penetrate into one another. This model may also be related to frequently noted drying shrinkage of wet-gels even after converting the pore-filling solvent into a supercritical fluid, whereas all surface tension forces should have been eliminated.

Graphical Abstract


Polydicyclopentadiene Aerogels Grubbs’ catalyst Mechanism Deformation 



This study was funded by the Army Research Office (W911NF-14-1-0369) and BASF Polyurethanes GmbH (0039509).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2015_3718_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3721 kb)


  1. 1.
    Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265CrossRefGoogle Scholar
  2. 2.
    Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45CrossRefGoogle Scholar
  3. 3.
    Morris CA, Anderson ML, Stroud RM, Merzhacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284:622–624CrossRefGoogle Scholar
  4. 4.
    Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884CrossRefGoogle Scholar
  5. 5.
    Leventis N, Lu H (2011) In: Aegerter MA, Leventis N, Koebel M (eds) Aerogels handbook. Springer, New YorkGoogle Scholar
  6. 6.
    Mohite DP, Larimore ZJ, Lu H, Mang JT, Sotiriou-Leventis C, Leventis N (2012) Monolithic hierarchical fractal assemblies of silica nanoparticles with polynorbornene via ROMP: a structure-property correlation from molecular to bulk through nano. Chem Mater 24:3434–3448CrossRefGoogle Scholar
  7. 7.
    Leventis N, Sotiriou-Leventis C, Mohite DP, Larimore ZJ, Mang JT, Churu G, Lu H (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater 23:2250–2261CrossRefGoogle Scholar
  8. 8.
    Chidambareswarapattar C, Xu L, Sotiriou-Leventis C, Leventis N (2013) Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons. RSC Adv 3:26459–26469CrossRefGoogle Scholar
  9. 9.
    Meador MAB, Malow EJ, He ZJ, McCorkle L, Guo H, Nauyen BN (2010) Synthesis and properties of nanoporous polyimide aerogels having a covalently bonded network structure. Polym Prepr 51:265–266Google Scholar
  10. 10.
    Leventis N, Chidambareswarapattar C, Mohite DP, Larimore ZJ, Lu H, Sotiriou-Leventis C (2011) Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. J Mater Chem 21:11981–11986CrossRefGoogle Scholar
  11. 11.
    Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu H, Churu G, Mang JT (2010) Multifunctional polyurea aerogels from isocyanates and water. A Structure–property case study. Chem Mater 22:6692–6710CrossRefGoogle Scholar
  12. 12.
    Sadekar AG, Mahadik SS, Bang AN, Larimore ZJ, Wisner CA, Bertino MF, Kalkan KA, Mang JT, Sotiriou-Leventis C, Leventis N (2012) From ‘green’ aerogels to porous graphite by emulsion gelation of acrylonitrile. Chem Mater 24:26–47CrossRefGoogle Scholar
  13. 13.
    Chidambareswarapattar C, McCarver PM, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Fractal multiscale nanoporous polyurethanes: flexible to extremely rigid aerogels from multifunctional small molecules. Chem Mater 25:3205–3224CrossRefGoogle Scholar
  14. 14.
    Mahadik-Khanolkar S, Donthula S, Sotiriou-Leventis C, Leventis N (2014) Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem Mater 26:1303–1317CrossRefGoogle Scholar
  15. 15.
    Perring M, Long TR, Bowden NB (2010) Epoxidation of the surface of polydicyclopentadiene for the self-assembly of organic monolayers. J Mater Chem 20:8679–8685CrossRefGoogle Scholar
  16. 16.
    Jeong W, Kessler MR (2008) Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chem Mater 20:7060–7068CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Lee JK, Gould GL (2007) Polydicyclopentadiene based aerogel: a new insulation material. J Sol–Gel Sci Technol 44:29–40CrossRefGoogle Scholar
  19. 19.
    Dawedeit C, Kim SH, Braun T, Worsley MA, Stephan AL, Wu KJ, Walton CC, Chernov AA, Satcher JH Jr, Hamza AV, Biener J (2012) Tuning the rheological properties of sols for low-density aerogel coating applications. Soft Matter 8:3518–3521CrossRefGoogle Scholar
  20. 20.
    Kim SH, Worsley MA, Valdez CA, Shin SJ, Dawedeit C, Braun T, Baumann TF, Letts SA, Kucheyev SO, Wu KJJ, Biener J, Satcher JH Jr, Hamza AV (2012) Exploration of the versatility of ring opening metathesis polymerization: an approach for gaining access to low density polymeric aerogels. RSC Adv 2:8672–8680CrossRefGoogle Scholar
  21. 21.
    Fisher RA, Grubbs RH (1992) Ring-opening metathesis polymerization of exo-dicyclopentadiene: reversible crosslinking by a metathesis catalyst. Macromol Chem Macromol Symp 63:271–277CrossRefGoogle Scholar
  22. 22.
    Abadie MJ, Dimonie M, Couve C, Dragutan V (2000) New catalysts for linear polydicyclopentadiene synthesis. Eur Polym J 36:1213–1219CrossRefGoogle Scholar
  23. 23.
    Dragutan V, Dragutan I, Dimonie M, Couve C, Abadie MJ (2002) Catalyst activity and selectivity in ROMP of dicyclopentadiene induced by some tungsten systems. NATO Sci Ser II Math Phys Chem 56:465–476Google Scholar
  24. 24.
    Mohite DP, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Polydicyclopentadiene aerogels grafted with PMMA: I. Molecular and interparticle crosslinking. Soft Matter 9:1516–1530CrossRefGoogle Scholar
  25. 25.
    Mohite DP, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Polydicyclopentadiene aerogels grafted with PMMA: II. Nanoscopic characterization and origin of macroscopic deformation. Soft Matter 9:1531–1539CrossRefGoogle Scholar
  26. 26.
    Aldridge M, Shankar C, Zhen C, Sui L, Kieffer J, Caruso M, Moore J (2010) Combined experimental and simulation study of the cure kinetics of DCPD. J Compos Mater 45:1827–1835CrossRefGoogle Scholar
  27. 27.
    Wilson GO, Caruso MM, Reimer MT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20:3288–3297CrossRefGoogle Scholar
  28. 28.
    Rule JD, Moore JS (2002) ROMP reactivity of endo- and exo-dicyclopentadiene. Macromolecules 35:7878–7882CrossRefGoogle Scholar
  29. 29.
    Yang G, Lee JK (2014) Curing kinetics and mechanical properties of endo-dicyclopentadiene synthesized using different Grubbs’ catalysts. Ind Eng Chem Res 53:3001–3011CrossRefGoogle Scholar
  30. 30.
    Davidson TA, Wagener KB, Priddy DB (1996) Polymerization of dicyclopentadiene: a tale of two mechanisms. Macromolecules 29:786–788CrossRefGoogle Scholar
  31. 31.
    Davidson TA, Wagener KB (1998) The polymerization of dicyclopentadiene: an investigation of mechanism. J Mol Catal A: Chem 133:67–74CrossRefGoogle Scholar
  32. 32.
    Dzik WI, Zhang XP, de Bruin B (2011) Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C–C bond formation. Inorg Chem 50:9896–9903CrossRefGoogle Scholar
  33. 33.
    Amir-Ebrahimi V, Corry DA, Hamilton JG, Thompson JM, Rooney JJ (2000) Characteristics of RuCl2(CHPh)(PCy3)2 as a catalyst for ring-opening metathesis polymerization. Macromolecules 33:717–724CrossRefGoogle Scholar
  34. 34.
    Schaubroeck D, Brughmans S, Vercaemst C, Schaubroeck J, Verpoort F (2006) Qualitative FT-Raman investigation of the ring opening metathesis polymerization of dicyclopentadiene. J Mol Catal A: Chem 254:180–185CrossRefGoogle Scholar
  35. 35.
    Ding F, Monsaert S, Drozdzak R, Dragutan I, Dragutan V, Sun Y, Gao E, Voort PVD, Verpoort F (2009) First FT-Raman and 1H NMR comparative investigations in ring opening metathesis polymerization. Vib Spectrosc 51:147–151CrossRefGoogle Scholar
  36. 36.
    Kim S-Y, Choi D-G, Yang S-M (2002) Rheological analysis of the gelation behavior of tetraethylorthosilane/vinyltriethoxysilane hybrid solutions. Korean J Chem Eng 19:190–196CrossRefGoogle Scholar
  37. 37.
    Raghavan SR, Chen LA, McDowell C, Khan SA, Hwang R, White S (1996) Rheological study of crosslinking and gelation in chlorobutyl elastomer systems. Polymer 37:5869–5875CrossRefGoogle Scholar
  38. 38.
    Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22:4656–4658CrossRefGoogle Scholar
  39. 39.
    Kolb M, Botet R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51:1123–1126CrossRefGoogle Scholar
  40. 40.
    Yang Y-S, Lafontaine E, Mortaigne B (1996) NMR characterization of dicyclopentadiene resins and polydicyclopentadienes. J Appl Polym Sci 60:2419–2435CrossRefGoogle Scholar
  41. 41.
    Vargas J, Martínez A, Santiago AA, Tlenkopatchev MA, Gaviño R, Aguilar-Vega MJ (2009) The effect of fluorine atoms on gas transport properties of new polynorbornene dicarboximides. Fluor Chem 130:162–168CrossRefGoogle Scholar
  42. 42.
    Díaz K, Vargas J, Del Castillo LF, Tlenkopatchev MA, Aguilar-Vega M (2005) Polynorbornene dicarboximides with cyclic pendant groups: synthesis and gas transport properties. Macromol Chem Phys 206:2316–2322CrossRefGoogle Scholar
  43. 43.
    Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non Cryst Solids 188:226–234CrossRefGoogle Scholar
  44. 44.
    Fricke J (1988) Aerogels—highly tenuous solids with fascinating properties. J Non Cryst Solids 100:169–173CrossRefGoogle Scholar
  45. 45.
    Gross J, Fricke J (1995) Scaling of elastic properties in highly porous nanostructured aerogels. Nanostruct Mater 6:905–908CrossRefGoogle Scholar
  46. 46.
    Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296CrossRefGoogle Scholar
  47. 47.
    Leventis N, Sotiriou-Leventis C, Mulik S, Dass A, Schnobrich J, Hobbs A, Fabrizio EF, Luo H, Churu G, Zhang Y, Lu H (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J Mater Chem 18:2475–2482CrossRefGoogle Scholar
  48. 48.
    Luo H, Churu G, Schnobrich J, Hobbs A, Fabrizio EF, Dass A, Mulik S, Sotiriou- Leventis C, Lu H, Leventis N (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol–Gel Sci Technol 48:113–134CrossRefGoogle Scholar
  49. 49.
    Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728CrossRefGoogle Scholar
  50. 50.
    Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146CrossRefGoogle Scholar
  51. 51.
    Hamilton G, Ivin KJ, Rooney JJ (1998) Ring-opening polymerization of endo and exo-dicyclopentadiene and their 7,8-dihydro derivatives. J Mol Catal 36:115–125CrossRefGoogle Scholar
  52. 52.
    Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  53. 53.
    Lee DG, Bonner JS, Garton LS, Ernest AN, Autenrieth RL (2000) Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach. Water Res 34:1987–2000CrossRefGoogle Scholar
  54. 54.
    Schrock RR (2009) Recent advances in high oxidation state Mo and W imido alkylidene chemistry. Chem Rev 109:3211–3226CrossRefGoogle Scholar
  55. 55.
    Schrock RR (2011) Synthesis of stereoregular ROMP polymers using molybdenum and tungsten imido alkylidene initiators. Dalton Trans 40:7484–7495CrossRefGoogle Scholar
  56. 56.
    Saragas N, Floros G, Paraskevopoulou P, Psaroudakis N, Koinis S, Pitsikalis M, Mertis K (2009) Polymerization of terminal alkynes with a triply bonded ditungsten halo-complex. J Mol Catal A: Chem 303:124–131CrossRefGoogle Scholar
  57. 57.
    Adams RD, Cotton FA (eds) (1999) Catalysis by Di- and polynuclear metal cluster complexes. Wiley VCH, New YorkGoogle Scholar
  58. 58.
    Floros G, Saragas N, Paraskevopoulou P, Psaroudakis N, Koinis S, Pitsikalis M, Hadjichristidis N, Mertis K (2012) Ring opening metathesis polymerization of norbornene and derivatives by the triply bonded ditungsten complex Na[W2(µ-Cl)3Cl4(THF)2] (THF)3. Polymers 4:1657–1673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Abhishek Bang
    • 1
  • Dhairyashil Mohite
    • 1
  • Adnan Malik Saeed
    • 1
  • Nicholas Leventis
    • 1
  • Chariklia Sotiriou-Leventis
    • 1
  1. 1.Department of ChemistryMissouri University of Science and TechnologyRollaUSA

Personalised recommendations