Journal of Sol-Gel Science and Technology

, Volume 75, Issue 2, pp 424–435 | Cite as

Synthesis of visible light-responsive cobalt-doped TiO2 nanoparticles with tunable optical band gap

  • Chandni Khurana
  • O. P. Pandey
  • Bhupendra Chudasama
Original Paper


Visible light-responsive photocatalysts are the most promising candidates for green bioremediation processes that will degrade toxic organic industrial waste into harmless compounds. Among the photocatalysts, TiO2 is best suited for large-scale photo-induced bioremediation processes mainly because of low cost and abundance. The major obstacle in its utilization as photocatalyst is its poor response to sunlight due to its wide energy band gap. This article reports sol–gel synthesis of pristine and cobalt-doped TiO2 nanoparticles (TNPs). Titanium (IV) isopropoxide is hydrolyzed and condensed into amorphous titanium dioxide gel by water/ethanol under acidic conditions. Irrespective of the Co concentration, TNPs always crystallize into anatase phase when calcine at 500 °C. No signature of other isomorphous phases, i.e., rutile or brookite, is detected. The optical band gap of pristine (0 % Co doped) TNPs is 3.03 eV (λ = 409 nm), which decreases up to 1.93 eV (λ = 642 nm) when Co concentration in TiO2 matrix increases from 0 to 2 %. Co(+2) substitution at Ti(+4) site generates additional oxygen vacancies in the TiO2 unit cell, which introduces extra energy levels in the forbidden band that reduces the indirect energy band gap of TNPs. Co doping in TNPs makes them sensitive to visible radiation, and hence, their photoresponse is expected to be better under sunlight than pristine bulk titania, which is active only in the UV region of the electromagnetic spectrum.

Graphical Abstract


Titania Doping Optical band gap Sol–gel Diffuse reflectance spectroscopy 



Authors are thankful to Council of Scientific and Industrial Research, New Delhi [Scheme No. 03(1226)/12/ERM-II], and University Grants Commission, New Delhi [Scheme No. F. No. 42-850/2013 (SR)], for the financial support. Authors also acknowledge SAIF, IITB for extending transmission electron microscopy facility.


  1. 1.
    Salvador A, Pascual-Marti MC, Adell JR, Requeni A, March JG (2000) J Pharm Biomed Anal 22:301–306CrossRefGoogle Scholar
  2. 2.
    Braun JH, Baidins A, Marganski RE (1992) Prog Org Coat 20:105–138CrossRefGoogle Scholar
  3. 3.
    Yuan SA, Chen WH, Hu SS (2005) Mater Sci Eng C 25:479–485CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  5. 5.
    Tada H, Tanaka M (1997) Langmuir 13:360–364CrossRefGoogle Scholar
  6. 6.
    Bokare A, Pai M, Athawale AA (2013) Sol Energy 91:111–119CrossRefGoogle Scholar
  7. 7.
    Zhao H, Liu L, Andinobc JM, Li Y (2013) J Mater Chem A 1:8209–8216CrossRefGoogle Scholar
  8. 8.
    Niu Y, Xing M, Tian B, Zhang J (2012) Appl Catal B 115–116:253–260CrossRefGoogle Scholar
  9. 9.
    Gratzel M (2001) Nature 414:338–344CrossRefGoogle Scholar
  10. 10.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  11. 11.
    Hoffmann MR, Martin ST, Choi W, Bahneman DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  12. 12.
    Coronado DR, Gattorno GR, Pesqueira MEE, Cab C, Coss RD, Osbam G (2008) Nanotechnology 19:145605CrossRefGoogle Scholar
  13. 13.
    Ismail AA, Bahnemann DW (2011) J Mater Chem 21:11686–11707CrossRefGoogle Scholar
  14. 14.
    Pal M, Serrano JG, Santiago P, Pal U (2007) J Phys Chem C 111:96–102CrossRefGoogle Scholar
  15. 15.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) J Phys Chem Solids 63:1909–1920CrossRefGoogle Scholar
  16. 16.
    Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) J Am Chem Soc 135:9995–9998CrossRefGoogle Scholar
  17. 17.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  18. 18.
    Ricci PC, Carbonaro CM, Lehmann AG, Congiu F, Puxeddu B, Cappelletti G, Spadavecchia F (2013) J Alloys Compd 561:109–113CrossRefGoogle Scholar
  19. 19.
    Dua J, Zhao G, Shi Y, Yang H, Li Y, Zhu G (2013) Appl Surf Sci 273:278–286CrossRefGoogle Scholar
  20. 20.
    Zhang L, Tse MS, Tan OK, Wang YX, Han M (2013) J Mater Chem A 1:4497–4507CrossRefGoogle Scholar
  21. 21.
    Biswas A, Corani A, Kathiravan A, Infahsaeng Y, Yartsev A, Sundstrom V, De S (2013) Nanotechnology 24:195601CrossRefGoogle Scholar
  22. 22.
    Radoicic M, Saponjic Z, Jankovic IA, Ciric-Marjanovic G, Ahrenkiel SP, Comor MI (2013) Appl Catal B 136–137:133–139CrossRefGoogle Scholar
  23. 23.
    Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11CrossRefGoogle Scholar
  24. 24.
    Sayilkan F, Asilturk M, Sayilkan H, Onal Y, Akarsu M, Arpac E (2005) Turk J Chem 29:697–706Google Scholar
  25. 25.
    Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341CrossRefGoogle Scholar
  26. 26.
    Harris MT, Singhal A (1997) J Sol–Gel Sci Tech 8:41–47Google Scholar
  27. 27.
    Hamadanian M, Vanani AR, Majedi A (2010) J Iran Chem Soc 7:S52–S58CrossRefGoogle Scholar
  28. 28.
    Choudhury B, Choudhury A (2012) J Lumin 132:178–184CrossRefGoogle Scholar
  29. 29.
    Cullity BD, Stock SR (2002) Elements of X-ray Diffraction, 3rd edn. Addison-Wesley Publishing Company Inc., USAGoogle Scholar
  30. 30.
    Choudhury B, Dey M, Choudhury A (2013) Int Nano Lett 3:25–32CrossRefGoogle Scholar
  31. 31.
    Das K, Sharma SN, Kumar M, De SK (2009) J Phys Chem C 113:14783–14792CrossRefGoogle Scholar
  32. 32.
    Rajkumar N, Ramachandran K (2011) IEEE Trans Nanotechnol 10:513–519CrossRefGoogle Scholar
  33. 33.
    Fu Y, Du H, Zhang S, Huang W (2005) Mater Sci Eng A 403:25–31CrossRefGoogle Scholar
  34. 34.
    Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Adv Funct Mater 21:3744–3752CrossRefGoogle Scholar
  35. 35.
    Hench LL, West JK (1990) Chem Rev 90:33–72CrossRefGoogle Scholar
  36. 36.
    Lee JD (1998) Concise inorganic chemistry, 5th edn. Wiley, IndiaGoogle Scholar
  37. 37.
    Smith AM, Nie S (2010) Acc Chem Res 43:190–200CrossRefGoogle Scholar
  38. 38.
    Liu G, Yang HG, Wang X, Cheng L, Lu H, Wang L, Lu GQ, Cheng HM (2009) J Phys Chem C 113:21784–21788CrossRefGoogle Scholar
  39. 39.
    Sahu M, Biswas P (2011) Nanoscale Res Lett 6:441–454CrossRefGoogle Scholar
  40. 40.
    Pal M, Pal U, Jimenez J, Rodriguez F (2012) Nanoscale Res Lett 7:1–12CrossRefGoogle Scholar
  41. 41.
    Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2004) Appl Catal B 57:23–30CrossRefGoogle Scholar
  42. 42.
    Bae SW, Borse PH, Hong SJ, Jang JS, Lee JS (2007) J Korean Phys Soc 51:S22–S26CrossRefGoogle Scholar
  43. 43.
    Kiriakidis G, Binas V (2014) J Korean Phys Soc 65:297–302CrossRefGoogle Scholar
  44. 44.
    Kuljanin-Jakovljevic J, Radoicic M, Radetic T, Konstantinovic Z, Saponjic ZV, Nedeljkovic J (2009) J Phys Chem C 113:21029–21033CrossRefGoogle Scholar
  45. 45.
    Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P (2014) Appl Nanosci. doi: 10.1007/s13204-014-0337-y Google Scholar
  46. 46.
    Bryan JD, Heald SM, Chambers SA, Gamelin DR (2004) J Am Chem Soc 126:11640–11647CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chandni Khurana
    • 1
  • O. P. Pandey
    • 1
  • Bhupendra Chudasama
    • 1
  1. 1.Laboratory of Nanomedicine, School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations