Skip to main content
Log in

The effect of sol–gel preparation conditions on structural characteristics and magnetic properties of M-type barium hexaferrite thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have shown the possibility to obtain M-type barium hexaferrite thin films with thickness of ~200–450 nm on the surface of dielectric α-Al2O3 substrates with low microwave dielectric loss (tan δ ~ 10−4 GHz) by a sol–gel method. For the production of high-dense homogeneous thin films of M-type barium hexaferrite (BaFe12O19, BHF) with nanorod-like grains and a uniform distribution of iron and barium ions, we have studied the synthesis conditions for thermally stable film-forming solutions with high concentrations of barium ions. Films with a c-axis magnetic texture were obtained by spin-coating the former solutions on α-Al2O3 substrates and annealing at temperatures between 473 and 1073 K. The resulting textured M-type BHF films have demonstrated the following magnetic parameters: H c⊥ = 334 kA/m, H c|| = 167 kA/m; M s⊥ = 0.005 emu, M s|| = 0.003 emu for the films’ thickness of ~200 nm, and H c⊥ = 360 kA/m, H c|| = 338 kA/m; M s⊥ = 0.009 emu, M s|| = 0.007 emu for the films’ thickness of ~450 nm. These M-type BHF thin films can serve as a promising basis for further development of multilayer microwave resonant elements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smith J, Wijn HPJ (1959) Ferrites. Philips Technical Library, Eindhoven

    Google Scholar 

  2. de Vries Marc J (2005) 80 years of research of the Philips Natuurkundig Laboratorium. Pallas Publications, Amsterdam

    Book  Google Scholar 

  3. Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, application, 2nd edn. Wiley, New York

    Book  Google Scholar 

  4. Koledintseva MY, Khanamirov AE, Kitaitsev AA (2011) Advances in ceramics—electric and magnetic ceramics, bioceramics, ceramics and environment. InTech, Rijeka, Croatia, pp 550–527

  5. Pfeiffer H, Chantrell RW, Görnert PJ (2000) Magn Magn Mater 125:373–376

    Article  Google Scholar 

  6. Mikhailovsky LK, Pollak BP, Khanamirov AE (2002) Research and development of BHF hexaferrite devices in MPEI. In: Proceedings of 9th international conference on spin electronics. Moscow, pp 559–573

  7. Meshram MR, Agarwal NK, Sinha B, Misra PS (2004) J Magn Magn Mater 271:207–213

    Article  Google Scholar 

  8. Hylton TL, Ulllah MA, Coffey KR, Umphress R, Howard JK (1994) J Appl Phys 75(10):5960–5965

    Article  Google Scholar 

  9. Lei F, Xiaogang L, Zhang Y, Vinayak P (2003) Nano Lett 3(6):757–760

    Article  Google Scholar 

  10. Harris VG, Chen Z, Chen Y, Yoon S, Sakai T, Gieler A, Yang A, He Y, Ziemer KS, Sun NX, Vittoria C (2006) J Appl Phys 99:08M911–08M915

    Google Scholar 

  11. Frey NA, Heindl R, Srinath S, Srikanth S, Dudney NJ (2005) Mater Res Bull 40:1286–1293

    Article  Google Scholar 

  12. Harris VG (2012) IEEE Trans Magn 48(3):1075–1104

    Article  Google Scholar 

  13. Peng B, Wang Y, Zhang W, Zhang W, Tan K (2012) Mod Phys Lett B 26:1250168–1250174

    Article  Google Scholar 

  14. Chen Y, Geiler AL, Sakai T, Yoon SD, Vittoria C et al (2006) J Appl Phys 99:08M904

    Google Scholar 

  15. Harris VG, Geiler A, Chen Y, Yoon SD, Wu M, Yang A, Chen Z, He P, Parimi PV, Zuo X, Patton CE, Abe M, Acher O, Vittoria C (2009) J Magn Magn Mater 321:2035–2047

    Article  Google Scholar 

  16. Li H, Huang J, Li Q, Li Q, Su X (2009) J Sol–Gel Sci Technol 52:309–314

    Article  Google Scholar 

  17. Pramanik NC, Fujii T, Nakanishi M (2005) Mater Lett 59:468–472

    Article  Google Scholar 

  18. Santos JVA, Macedo MA, Cuhna F, Sasaki JM, Duque JGS (2003) J Microelectron 34:565–567

    Article  Google Scholar 

  19. Masoudpanah SM, Seyyed Ebrahimi SA (2011) J Magn Magn Mater 323:2643–2647

    Article  Google Scholar 

  20. Nakagawa S, Matsushita N, Naoe M (2001) J Magn Magn Mater 235:337–341

    Article  Google Scholar 

  21. Chandrasekhar R, Mapps DJ (1996) J Magn Magn Mater 157–158:326–328

    Article  Google Scholar 

  22. Lisfi A, Lodder JC (2002) J Magn Magn Mater 242–245:391–394

    Article  Google Scholar 

  23. Lisfi A, Nguyen LT, Lodder JC, Williams CM, Corcoran H, Chang P, Johnson A, Morgan W (2005) J Magn Magn Mater 290–291:219–222

    Article  Google Scholar 

  24. Wane I, Bassudou A, Cosset F, Célérier A, Girault C, Decossas JL, Vereille JC (2000) J Magn Magn Mater 211:309–313

    Article  Google Scholar 

  25. Zhang XY, Ong CK, Xu SY, Fang HC (1999) Appl Surf Sci 143:323–327

    Article  Google Scholar 

  26. Zhang W, Tang H, Peng B, Zhang W (2010) Appl Surf Sci 257:176–179

    Article  Google Scholar 

  27. An SY, Lee SW, Shim IB, Kim CS (2002) Phys Status Solidi (a) 189:893–896

    Article  Google Scholar 

  28. Lee W-J, Fung T-T (1995) J Mater Sci 30:4349–4354

    Article  Google Scholar 

  29. Brinker CJ, George W (1990) Scherer sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing, Academic press, New York

    Google Scholar 

  30. Qui J, Lan L (2006) Mater Sci Eng, B 133:191–194

    Article  Google Scholar 

  31. Li H, Huang J, Li Q, Xiaodong S (2009) J Sol–Gel Sci Technol 52:309–314

    Article  Google Scholar 

  32. Yuan Y, Lee TR (2013) Contact angle and wetting properties. Surf Sci 51:3–34

    Google Scholar 

  33. El-Sheikh SM, Harraz FA, Abdel-Halim KS (2008) Synthesis and characterization of mesoporous iron oxide by solid thermal decomposition reaction for catalytic oxidation of CO. In: International conference on nanotechnology and applications, vol 615-005, pp 132–137

  34. Lotgering FK (1959) J Inorg Nucl Chem 9:113–123

    Article  Google Scholar 

  35. Ricote J, Poyato R, Alguero M, Pardo L, Calzada ML (2003) J Am Ceram Soc 86(9):1571–1577

    Article  Google Scholar 

  36. Zhuang Z, Kryder MA, White RM, Laughlin DE (1999) C-axis perpendicularly oriented barium ferrite thin film media on silicon substrate. In: MRS Proceedings vol 562, pp 605–610

  37. Liu L, Zuon R, Lian Q (2013) Ceram Int 39:3865–3871

    Article  Google Scholar 

  38. Jin ZQ, Liu JP (2006) J Phys D Appl Phys 39:R227–R244

    Article  Google Scholar 

  39. Jiang SW, Zhang QY, Huang W, Jiang B, Zhang Y (2005) Appl Surf Sci 252(24):8756–8759

    Article  Google Scholar 

  40. Acharya BR, Prasad S, Venkataramani N, Shringi SN, Krishnan R (1996) J Appl Phys 478(79):478–484

    Article  Google Scholar 

  41. Suzuk Y (2001) Annu Rev Mater Res 31:265–289

    Article  Google Scholar 

  42. Hahn Th (2005) International tables for crystallography a: space group symmetry A. Springer, New York

    Google Scholar 

  43. Ayers JE (2007) Heteroepitaxy of semiconductors: theory, growth, and characterization. Taylor & Francis Group, LLC, CRC Press, Boca Raton

    Book  Google Scholar 

  44. Capraro S, Chatelon JP, Joisten H, Le Berre M, Bayard B, Barbier D, Rousseau JJ (2003) J Appl Phys 93:9898–9901

    Article  Google Scholar 

  45. Park N-J, Field DP, Nowell MM, Besse PR (2005) J Electron Mater 34(12):1500–1508

    Article  Google Scholar 

  46. Kim DH, Nam IT, Hong YK (2003) Mater Sci 21:65–72

    Google Scholar 

Download references

Acknowledgments

We acknowledge the project “NANOLICOM” (FP7-PEOPLE-2009-IRSES program, 2011–2014, Grant agreement No. 247579) and the partial support of the Spanish Project MAT2013-40489-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Solovyova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyova, E.D., Calzada, M.L. & Belous, A.G. The effect of sol–gel preparation conditions on structural characteristics and magnetic properties of M-type barium hexaferrite thin films. J Sol-Gel Sci Technol 75, 215–223 (2015). https://doi.org/10.1007/s10971-015-3692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3692-6

Keywords

Navigation