Journal of Sol-Gel Science and Technology

, Volume 75, Issue 1, pp 215–223 | Cite as

The effect of sol–gel preparation conditions on structural characteristics and magnetic properties of M-type barium hexaferrite thin films

Original Paper


We have shown the possibility to obtain M-type barium hexaferrite thin films with thickness of ~200–450 nm on the surface of dielectric α-Al2O3 substrates with low microwave dielectric loss (tan δ ~ 10−4 GHz) by a sol–gel method. For the production of high-dense homogeneous thin films of M-type barium hexaferrite (BaFe12O19, BHF) with nanorod-like grains and a uniform distribution of iron and barium ions, we have studied the synthesis conditions for thermally stable film-forming solutions with high concentrations of barium ions. Films with a c-axis magnetic texture were obtained by spin-coating the former solutions on α-Al2O3 substrates and annealing at temperatures between 473 and 1073 K. The resulting textured M-type BHF films have demonstrated the following magnetic parameters: H c⊥ = 334 kA/m, H c|| = 167 kA/m; M s⊥ = 0.005 emu, M s|| = 0.003 emu for the films’ thickness of ~200 nm, and H c⊥ = 360 kA/m, H c|| = 338 kA/m; M s⊥ = 0.009 emu, M s|| = 0.007 emu for the films’ thickness of ~450 nm. These M-type BHF thin films can serve as a promising basis for further development of multilayer microwave resonant elements.

Graphical Abstract


Barium hexaferrite Sol–gel synthesis Non-crystalline thin films c-Axis textured film Magnetic characteristics Surface microstructure 



We acknowledge the project “NANOLICOM” (FP7-PEOPLE-2009-IRSES program, 2011–2014, Grant agreement No. 247579) and the partial support of the Spanish Project MAT2013-40489-P.


  1. 1.
    Smith J, Wijn HPJ (1959) Ferrites. Philips Technical Library, EindhovenGoogle Scholar
  2. 2.
    de Vries Marc J (2005) 80 years of research of the Philips Natuurkundig Laboratorium. Pallas Publications, AmsterdamCrossRefGoogle Scholar
  3. 3.
    Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, application, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Koledintseva MY, Khanamirov AE, Kitaitsev AA (2011) Advances in ceramics—electric and magnetic ceramics, bioceramics, ceramics and environment. InTech, Rijeka, Croatia, pp 550–527Google Scholar
  5. 5.
    Pfeiffer H, Chantrell RW, Görnert PJ (2000) Magn Magn Mater 125:373–376CrossRefGoogle Scholar
  6. 6.
    Mikhailovsky LK, Pollak BP, Khanamirov AE (2002) Research and development of BHF hexaferrite devices in MPEI. In: Proceedings of 9th international conference on spin electronics. Moscow, pp 559–573Google Scholar
  7. 7.
    Meshram MR, Agarwal NK, Sinha B, Misra PS (2004) J Magn Magn Mater 271:207–213CrossRefGoogle Scholar
  8. 8.
    Hylton TL, Ulllah MA, Coffey KR, Umphress R, Howard JK (1994) J Appl Phys 75(10):5960–5965CrossRefGoogle Scholar
  9. 9.
    Lei F, Xiaogang L, Zhang Y, Vinayak P (2003) Nano Lett 3(6):757–760CrossRefGoogle Scholar
  10. 10.
    Harris VG, Chen Z, Chen Y, Yoon S, Sakai T, Gieler A, Yang A, He Y, Ziemer KS, Sun NX, Vittoria C (2006) J Appl Phys 99:08M911–08M915Google Scholar
  11. 11.
    Frey NA, Heindl R, Srinath S, Srikanth S, Dudney NJ (2005) Mater Res Bull 40:1286–1293CrossRefGoogle Scholar
  12. 12.
    Harris VG (2012) IEEE Trans Magn 48(3):1075–1104CrossRefGoogle Scholar
  13. 13.
    Peng B, Wang Y, Zhang W, Zhang W, Tan K (2012) Mod Phys Lett B 26:1250168–1250174CrossRefGoogle Scholar
  14. 14.
    Chen Y, Geiler AL, Sakai T, Yoon SD, Vittoria C et al (2006) J Appl Phys 99:08M904Google Scholar
  15. 15.
    Harris VG, Geiler A, Chen Y, Yoon SD, Wu M, Yang A, Chen Z, He P, Parimi PV, Zuo X, Patton CE, Abe M, Acher O, Vittoria C (2009) J Magn Magn Mater 321:2035–2047CrossRefGoogle Scholar
  16. 16.
    Li H, Huang J, Li Q, Li Q, Su X (2009) J Sol–Gel Sci Technol 52:309–314CrossRefGoogle Scholar
  17. 17.
    Pramanik NC, Fujii T, Nakanishi M (2005) Mater Lett 59:468–472CrossRefGoogle Scholar
  18. 18.
    Santos JVA, Macedo MA, Cuhna F, Sasaki JM, Duque JGS (2003) J Microelectron 34:565–567CrossRefGoogle Scholar
  19. 19.
    Masoudpanah SM, Seyyed Ebrahimi SA (2011) J Magn Magn Mater 323:2643–2647CrossRefGoogle Scholar
  20. 20.
    Nakagawa S, Matsushita N, Naoe M (2001) J Magn Magn Mater 235:337–341CrossRefGoogle Scholar
  21. 21.
    Chandrasekhar R, Mapps DJ (1996) J Magn Magn Mater 157–158:326–328CrossRefGoogle Scholar
  22. 22.
    Lisfi A, Lodder JC (2002) J Magn Magn Mater 242–245:391–394CrossRefGoogle Scholar
  23. 23.
    Lisfi A, Nguyen LT, Lodder JC, Williams CM, Corcoran H, Chang P, Johnson A, Morgan W (2005) J Magn Magn Mater 290–291:219–222CrossRefGoogle Scholar
  24. 24.
    Wane I, Bassudou A, Cosset F, Célérier A, Girault C, Decossas JL, Vereille JC (2000) J Magn Magn Mater 211:309–313CrossRefGoogle Scholar
  25. 25.
    Zhang XY, Ong CK, Xu SY, Fang HC (1999) Appl Surf Sci 143:323–327CrossRefGoogle Scholar
  26. 26.
    Zhang W, Tang H, Peng B, Zhang W (2010) Appl Surf Sci 257:176–179CrossRefGoogle Scholar
  27. 27.
    An SY, Lee SW, Shim IB, Kim CS (2002) Phys Status Solidi (a) 189:893–896CrossRefGoogle Scholar
  28. 28.
    Lee W-J, Fung T-T (1995) J Mater Sci 30:4349–4354CrossRefGoogle Scholar
  29. 29.
    Brinker CJ, George W (1990) Scherer sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing, Academic press, New YorkGoogle Scholar
  30. 30.
    Qui J, Lan L (2006) Mater Sci Eng, B 133:191–194CrossRefGoogle Scholar
  31. 31.
    Li H, Huang J, Li Q, Xiaodong S (2009) J Sol–Gel Sci Technol 52:309–314CrossRefGoogle Scholar
  32. 32.
    Yuan Y, Lee TR (2013) Contact angle and wetting properties. Surf Sci 51:3–34Google Scholar
  33. 33.
    El-Sheikh SM, Harraz FA, Abdel-Halim KS (2008) Synthesis and characterization of mesoporous iron oxide by solid thermal decomposition reaction for catalytic oxidation of CO. In: International conference on nanotechnology and applications, vol 615-005, pp 132–137Google Scholar
  34. 34.
    Lotgering FK (1959) J Inorg Nucl Chem 9:113–123CrossRefGoogle Scholar
  35. 35.
    Ricote J, Poyato R, Alguero M, Pardo L, Calzada ML (2003) J Am Ceram Soc 86(9):1571–1577CrossRefGoogle Scholar
  36. 36.
    Zhuang Z, Kryder MA, White RM, Laughlin DE (1999) C-axis perpendicularly oriented barium ferrite thin film media on silicon substrate. In: MRS Proceedings vol 562, pp 605–610Google Scholar
  37. 37.
    Liu L, Zuon R, Lian Q (2013) Ceram Int 39:3865–3871CrossRefGoogle Scholar
  38. 38.
    Jin ZQ, Liu JP (2006) J Phys D Appl Phys 39:R227–R244CrossRefGoogle Scholar
  39. 39.
    Jiang SW, Zhang QY, Huang W, Jiang B, Zhang Y (2005) Appl Surf Sci 252(24):8756–8759CrossRefGoogle Scholar
  40. 40.
    Acharya BR, Prasad S, Venkataramani N, Shringi SN, Krishnan R (1996) J Appl Phys 478(79):478–484CrossRefGoogle Scholar
  41. 41.
    Suzuk Y (2001) Annu Rev Mater Res 31:265–289CrossRefGoogle Scholar
  42. 42.
    Hahn Th (2005) International tables for crystallography a: space group symmetry A. Springer, New YorkGoogle Scholar
  43. 43.
    Ayers JE (2007) Heteroepitaxy of semiconductors: theory, growth, and characterization. Taylor & Francis Group, LLC, CRC Press, Boca RatonCrossRefGoogle Scholar
  44. 44.
    Capraro S, Chatelon JP, Joisten H, Le Berre M, Bayard B, Barbier D, Rousseau JJ (2003) J Appl Phys 93:9898–9901CrossRefGoogle Scholar
  45. 45.
    Park N-J, Field DP, Nowell MM, Besse PR (2005) J Electron Mater 34(12):1500–1508CrossRefGoogle Scholar
  46. 46.
    Kim DH, Nam IT, Hong YK (2003) Mater Sci 21:65–72Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. D. Solovyova
    • 1
  • M. L. Calzada
    • 2
  • A. G. Belous
    • 1
  1. 1.Department of Solid State ChemistryV.I. Vernadskii Institute of General and Inorganic ChemistryKiev-142Ukraine
  2. 2.Department of Ferroelectric Materials-ICMMInstitute of Materials ScienceMadridSpain

Personalised recommendations