Journal of Sol-Gel Science and Technology

, Volume 75, Issue 1, pp 141–151 | Cite as

Nanocrystalline TiO2 coatings by sol–gel: photocatalytic activity on Pietra di Noto biocalcarenite

  • Laura Bergamonti
  • Ilaria Alfieri
  • Andrea Lorenzi
  • Giovanni Predieri
  • Germana Barone
  • Giada Gemelli
  • Paolo Mazzoleni
  • Simona Raneri
  • Danilo Bersani
  • Pier Paolo Lottici
Original Paper


Self-cleaning photocatalytic coatings based on TiO2 nanoparticles obtained by sol–gel techniques at two different pH values (1.3–10.6) have been investigated on carbonatic stone. The selected material is the yellowish lithofacies of Palazzolo Formation calcarenite, commonly named Pietra di Noto, widely used in the Baroque monuments of the Noto Valley (Sicily, Italy). SEM–EDS, XRD and Raman investigations were carried out to characterize the TiO2 nanoparticles (mainly nanocrystalline anatase) obtained by the acid and basic nanosols and the corresponding coatings on pietra di Noto. To evaluate the effects of the treatments at two different pH values, changes in the stone color appearance, water absorption by capillarity and the behavior for salt crystallization were measured. The photocatalytic activity of the coatings was evaluated under UV irradiation, by monitoring methyl orange and methylene blue dye degradation as a function of time. The results highlight the compatibility of both treatments with respect to the properties of the calcarenite stone, showing no chromatic changes, no alteration of physical properties, an improvement in the resistance to salts crystallization and the good photocatalytic activity on both dyes. The experimental data suggest that the basic coating has to be preferred for carbonatic stones for its harmlessness and better performances in terms of self-cleaning action and protection against water and salts.

Graphical Abstract

Self-cleaning photocatalytic coatings based on TiO2, obtained by sol–gel at two different pH values, are applied on Pietra di Noto carbonatic stone. TiO2 nanoparticles and coatings are characterized by SEM, XRD and Raman. The photocatalytic activity of the coatings is evaluated under UV irradiation, by monitoring methyl orange and methylene blue dye degradation as a function of time. The basic coating is suitable for carbonatic stones for its harmlessness and better performances in terms of self-cleaning action and protection against water and salts.


Sol–gel titania Nanocrystalline TiO2 Biocalcarenites Self-cleaning coating Photocatalysis Anatase Pietra di Noto 


  1. 1.
    Andriani GF, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull Eng Geol Environ 62:77–84. doi: 10.1007/s10064-002-0174-1 Google Scholar
  2. 2.
    Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K (2008) Investigating morphological changes in treated vs. untreated stone building materials by X-ray micro-CT. Anal Bioanal Chem 391:1343–1350. doi: 10.1007/s00216-008-1946-7 CrossRefGoogle Scholar
  3. 3.
    Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M (2007) Effects of atmospheric NOx on biocalcarenite coated with different conservation products. Appl Geochem 22:1248–1254. doi: 10.1016/j.apgeochem.2007.03.035 CrossRefGoogle Scholar
  4. 4.
    Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol Soc Spec Publ 271:117–130. doi: 10.1144/GSL.SP.2007.271.01.13 CrossRefGoogle Scholar
  5. 5.
    Fronteau G, Schneider-Thomachot C, Chopin E, Barbin V, Mouze D, Pascal A (2010) Black-crust growth and interaction with underlying limestone microfacies. Geol Soc Spec Publ 333:25–34. doi: 10.1144/SP333.3 CrossRefGoogle Scholar
  6. 6.
    Perez-Monserrat EM, Varas MJ, Fort R, de Buergo MA (2011) Assessment of different methods for cleaning the limestone facades of the former Workers Hospital of Madrid, Spain. Stud Conserv 56:298–313. doi: 10.1179/204705811X13159282692969 CrossRefGoogle Scholar
  7. 7.
    Panniello A, Curri ML, Diso D, Licciulli L, Locaputo V, Agostiano A, Comparelli R, Mascolo G (2012) Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution. Appl Catal B Environ 121–122:190–197. doi: 10.1016/j.apcatb.2012.03.019 CrossRefGoogle Scholar
  8. 8.
    Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) Photocatalytic coating on limestone. J Sol–Gel Sci Technol 60:437–444. doi: 10.1007/s10971-011-2574-9 CrossRefGoogle Scholar
  9. 9.
    Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2013) A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci 275:389–396. doi: 10.1016/j.apsusc.2012.10.142 CrossRefGoogle Scholar
  10. 10.
    Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafò P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi: 10.1016/j.conbuildmat.2012.07.006 CrossRefGoogle Scholar
  11. 11.
    Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C (2007) Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit 8:69–72. doi: 10.1016/j.culher.2006.06.007 CrossRefGoogle Scholar
  12. 12.
    Aboul-Gheit AK, El-Desouki DS, El-Salamony RA (2014) Different outlet for preparing nano-TiO2 catalysts for the photodegradation of Black B dye in water. Egypt J Pet 23:339–348. doi: 10.1016/j.ejpe.2014.08.010 CrossRefGoogle Scholar
  13. 13.
    Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Nanocrystalline TiO2 by sol–gel: characterization and photocatalytic activity on Modica and Comiso stones. Appl Surf Sci 282:165–173. doi: 10.1016/j.apsusc.2013.05.095 CrossRefGoogle Scholar
  14. 14.
    Kapridaki C, Pinho L, Mosquera MJ, Maravelaki-Kalaitzaki P (2014) Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl Catal B Environ 156–157:416–427CrossRefGoogle Scholar
  15. 15.
    Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58:2618–2622. doi: 10.1016/j.matlet.2004.03.034 CrossRefGoogle Scholar
  16. 16.
    La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191. doi: 10.1016/j.porgcoat.2011.12.008 CrossRefGoogle Scholar
  17. 17.
    Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752. doi: 10.1021/jp962702+ CrossRefGoogle Scholar
  18. 18.
    Kumar SR, Suresh C, Vasudevan KA, Suja NR, Mukundan P, Warrier KGK (1999) Phase transformation in sol–gel titania containing silica. Mater Lett 38:161–166CrossRefGoogle Scholar
  19. 19.
    Kawahara T, Konishi Y, Tada H, Tohge N, Nishi J, Ito S (2002) A patterned TiO2 (Anatase)/TiO2 (Rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Edit 41:2811–2813. doi: 10.1002/1521-3773(20020802)41:15%3c2811:AID-ANIE2811%3e3.0.CO;2-%23 CrossRefGoogle Scholar
  20. 20.
    Alapi A, Sipas P, Ilisz I, Wittmann G, Ambrus Z, Kiricsi I, Mogyoròsi K, Dombi A (2006) Synthesis and characterization of titania photocatalysts: the influence of pretreatment on the activity. Appl Catal A-Gen 303:1–8. doi: 10.1016/j.apcata.2006.01.026 CrossRefGoogle Scholar
  21. 21.
    Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487. doi: 10.1021/jp000499j CrossRefGoogle Scholar
  22. 22.
    Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043. doi: 10.1038/srep04043 CrossRefGoogle Scholar
  23. 23.
    Ardizzone S, Bianchi CL, Cappelletti G, Gialanella S, Pirola C, Ragaini V (2007) Tailored anatase/brookite nanocrystalline TiO2. The optimal particle features for liquid- and gas-phase photocatalytic reactions. J Phys Chem C 111:13222–13231. doi: 10.1021/jp0741096 CrossRefGoogle Scholar
  24. 24.
    Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem Photobiol Sci 12:602–609. doi: 10.1039/c2pp25217a CrossRefGoogle Scholar
  25. 25.
    Rahal R, Wankhade A, Cha D, Fihri A, Ould-Chikh S, Patil U, Polshettiwar V (2012) Synthesis of hierarchical anatase TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. RSC Adv 2:7048–7052. doi: 10.1039/c2ra21104a CrossRefGoogle Scholar
  26. 26.
    Vivero-Escoto JL, Chiang YD, Wu KCW, Yamauchi Y (2012) Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Sci Technol Adv Mater 13:013003. doi: 10.1088/1468-6996/13/1/013003 CrossRefGoogle Scholar
  27. 27.
    Smitha VS, Manjumol KA, Baiju KV, Ghosh S, Perumal P, Warrier KGK (2010) Sol–gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings. J Sol–Gel Sci Technol 54:203–211. doi: 10.1007/s10971-010-2178-9 CrossRefGoogle Scholar
  28. 28.
    Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207. doi: 10.1023/B:NANO.0000034623.33083.71 CrossRefGoogle Scholar
  29. 29.
    Bergamonti L, Alfieri I, Franzò M, Lorenzi A, Montenero A, Predieri G, Raganato M, Calia A, Lazzarini L, Bersani D, Lottici PP (2014) Synthesis and characterization of nanocrystalline TiO2 with application as photoactive coating on stones. Environ Sci Pollut Res 21:13264–13277. doi: 10.1007/s11356-013-2136-5 CrossRefGoogle Scholar
  30. 30.
    Carbone S, Grasso M, Lentini F (1987) Lineamenti geologici del plateau Ibleo (Sicilia S.E.): presentazione delle carte geologiche della Sicilia Sud-Orientale. Mem. Soc. Geol. Ital. 38:127–135Google Scholar
  31. 31.
    Anania L, Badalà A, Barone G, Belfiore C, Calabrò C, Mazzoleni P, Pezzino A (2012) The stones in monumental masonry buildings of the ‘‘Val di Noto’’ area: new data on the relationships between petrographic characters and physical–mechanical properties. Constr Build Mater 33:122–132. doi: 10.1016/j.conbuildmat.2011.12.076 CrossRefGoogle Scholar
  32. 32.
    Quagliarini E, Bondioli F, Goffredo G, Licciulli A, Munafò P (2013) Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 14:1–7. doi: 10.1016/j.culher.2012.02.006 CrossRefGoogle Scholar
  33. 33.
    Bergamonti L, Alfieri I, Lorenzi A, Montenero A, Predieri G, Di Maggio R, Girardi F, Lazzarini L, Lottici PP (2015) Characterization and photocatalytic activity of TiO2 by sol–gel in acid and basic environments. J Sol Gel Sci Technol 73:91–102. doi: 10.1007/s10971-014-3498-y CrossRefGoogle Scholar
  34. 34.
    UNI EN 15866:2010: Conservation of cultural property: test methods—colour measurement of surfaces, UNI Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  35. 35.
    UNI EN 15801:2010: Conservation of cultural property: test methods—determination of water absorption by capillarity. UNI Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  36. 36.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRefGoogle Scholar
  37. 37.
    Quagliarini E, Bondioli F, Goffredo G, Licciulli A, Munafò P (2012) Smart surfaces for architectural heritage: preliminary results about the application of TiO2-based coatings on travertine. J Cult Herit 13:204–209. doi: 10.1016/j.culher.2011.10.002 CrossRefGoogle Scholar
  38. 38.
    UNI EN 12370:2001: Natural stone test methods—determination of resistance to salt crystallization UNI Ente Nazionale Italiano di Unificazione, MilanoGoogle Scholar
  39. 39.
    Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4–H2O and the generation of stress. Geochim Cosmochim Acta 72:4291–4306. doi: 10.1016/j.gca.2008.05.053 CrossRefGoogle Scholar
  40. 40.
    Ohta N, Robertson AR (2005) Colorimetry: fundamentals and applications. Wiley & Sons, New YorkCrossRefGoogle Scholar
  41. 41.
    Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks. Am Assoc Petr Geol, Mem 1:62–84Google Scholar
  42. 42.
    Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. Am Assoc Petr Geol, Mem 1:108–121Google Scholar
  43. 43.
    Choquette PW, Pray LC (1970) Geological nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Pet Geol Bull 54:207–224Google Scholar
  44. 44.
    Lottici PP, Bersani D, Braghini M, Montenero A (1993) Raman scattering characterization of gel-derived titania glass. J Mater Sci 28:177–183. doi: 10.1007/BF00349049 CrossRefGoogle Scholar
  45. 45.
    Bersani D, Antonioli G, Lottici PP, Lopez T (1998) Raman study of nanosized titania prepared by sol–gel route. J Non-Cryst Solids 234:175–181. doi: 10.1016/S0022-3093(98)00489-X CrossRefGoogle Scholar
  46. 46.
    Bersani D, Lottici PP, Ding XZ (1998) Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl Phys Lett 72:73–75. doi: 10.1063/1.120648 CrossRefGoogle Scholar
  47. 47.
    Golubović A, Šćepanović M, Kremenović A, Aškrabić S, Berec V, Dohćević-Mitrović Z, Popović ZV (2009) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol–Gel Sci Technol 49:311–319. doi: 10.1007/s10971-008-1872-3 CrossRefGoogle Scholar
  48. 48.
    Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62:352–363. doi: 10.1016/j.ibiod.2008.03.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laura Bergamonti
    • 1
  • Ilaria Alfieri
    • 1
  • Andrea Lorenzi
    • 1
  • Giovanni Predieri
    • 1
  • Germana Barone
    • 2
  • Giada Gemelli
    • 2
  • Paolo Mazzoleni
    • 2
  • Simona Raneri
    • 2
  • Danilo Bersani
    • 3
  • Pier Paolo Lottici
    • 3
  1. 1.Department of ChemistryUniversity of ParmaParmaItaly
  2. 2.Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
  3. 3.Department of Physics and Earth SciencesUniversity of ParmaParmaItaly

Personalised recommendations