Advertisement

Journal of Sol-Gel Science and Technology

, Volume 74, Issue 3, pp 677–684 | Cite as

A rational design of double layer mesoporous polysiloxane coatings for broadband antireflection

  • Jie Zha
  • Xin Lu
  • Zhong Xin
Original Paper

Abstract

For the purpose to realize broadband antireflection on glass substrates, double layer mesoporous polysiloxane coatings were well designed by solving Maxwell equation and prepared through sol–gel dip-coating method using tri-block copolymer (EO20PO70EO20) as porogen. The obtained double layer coatings revealed broadband antireflective performance within wavelength range from 400 to 900 nm with a maximum transmittance of 99.2 % around 520 nm, which was in well agreement with the calculated results. The mesopore structure was confirmed by AFM and N2 adsorption–desorption measurement. Moreover, it was found that the outer layer of resultant coatings showed increased hydrophobicity along with increased temperature. Hence, we proposed that the condensation degree of silica network played an important role on the surface wettability of polysiloxane coatings, which was fully investigated with the assistance of FT-IR and water contact angle measurements.

Graphical Abstract

Keywords

Antireflective coatings Sol–gel Dip-coating Polysiloxane Mesoporous structure Maxwell equation 

Notes

Acknowledgments

This research was financially supported by the Nanotech Foundation of Science and Technology Commission of Shanghai Municipality (No. 0652nm001), the National Natural Science Foundation of China (No. 21006025), and the Fundamental Research Funds for the Central Universities. Furthermore, sincere thanks go to Prof. Xinling Wang from Shanghai Jiaotong University for his great assistance to the Ellipsometer measurement.

References

  1. 1.
    Raut HK, Ganesh VA, Nair AS, Ramakrishna S (2011) Energy Environ Sci 4:3779–3804CrossRefGoogle Scholar
  2. 2.
    Lee C, Bae SY, Mobasser S, Manohara H (2005) Nano Lett 5:2438–2442CrossRefGoogle Scholar
  3. 3.
    Lee Y-J, Ruby DS, Peters DW, McKenzie BB, Hsu JW (2008) Nano Lett 8:1501–1505CrossRefGoogle Scholar
  4. 4.
    Zhu J, Hsu CM, Yu ZF, Fan SH, Cui Y (2010) Nano Lett 10:1979–1984CrossRefGoogle Scholar
  5. 5.
    An SJ, Chae JH, Yi G-C, Park GH (2008) Appl Phys Lett 92:121108CrossRefGoogle Scholar
  6. 6.
    Sainiemi L, Jokinen V, Shah A, Shpak M, Aura S, Suvanto P, Franssila S (2011) Adv Mater 23:122–126CrossRefGoogle Scholar
  7. 7.
    Macleod H (1986) Thin-film optical filters. Macmillan, New YorkCrossRefGoogle Scholar
  8. 8.
    Li X, Gao JP, Xue LJ, Han YC (2010) Adv Funct Mater 20:259–265CrossRefGoogle Scholar
  9. 9.
    Li XA, Xue LJ, Han YC (2011) J Mater Chem 21:5817–5826CrossRefGoogle Scholar
  10. 10.
    Cai JG, Ye JF, Chen SY, Zhao XW, Zhang DY, Chen S, Ma YR, Jin S, Qi LM (2012) Energy Environ Sci 5:7575–7581CrossRefGoogle Scholar
  11. 11.
    Huang JY, Wang XD, Wang ZL (2008) Nanotechnology 19:025602CrossRefGoogle Scholar
  12. 12.
    Sun C-H, Gonzalez A, Linn NC, Jiang P, Jiang B (2008) Appl Phys Lett 92:051107CrossRefGoogle Scholar
  13. 13.
    Hao JY, Lu N, Xu HB, Wang WT, Gao LG, Chi LF (2009) Chem Mater 21:1802–1805CrossRefGoogle Scholar
  14. 14.
    Tao M, Zhou WD, Yang HJ, Chen L (2007) Appl Phys Lett 91:081118CrossRefGoogle Scholar
  15. 15.
    Diedenhofen SL, Vecchi G, Algra RE, Hartsuiker A, Muskens OL, Immink G, Bakkers EP, Vos WL, Rivas JG (2009) Adv Mater 21:973–978CrossRefGoogle Scholar
  16. 16.
    Das S, Roy S, Patra A, Biswas PK (2003) Mater Lett 57:2320–2325CrossRefGoogle Scholar
  17. 17.
    Faustini M, Nicole L, Boissiere C, Innocenzi P, Sanchez C, Grosso D (2010) Chem Mater 22:4406–4413CrossRefGoogle Scholar
  18. 18.
    Kum BG, Park YC, Chang YJ, Jeon JY, Jang HM (2011) Thin Solid Films 519:3778–3781CrossRefGoogle Scholar
  19. 19.
    Li XG, Shen J (2011) Thin Solid Films 519:6236–6240CrossRefGoogle Scholar
  20. 20.
    Kim S, Cho J, Char K (2007) Langmuir 23:6737–6743CrossRefGoogle Scholar
  21. 21.
    Wang NF, Kuo TW, Tsai YZ, Lin SX, Hung PK, Lin CL, Houng MP (2012) Opt Express 20:7445–7453CrossRefGoogle Scholar
  22. 22.
    ASTM Standard D3359 (2005). Standard test methods for measuring adhesion by tape testGoogle Scholar
  23. 23.
    ASTM Standard G173 (2008). Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surfaceGoogle Scholar
  24. 24.
    Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Sol Energy Mater Sol Cells 94:1081–1088CrossRefGoogle Scholar
  25. 25.
    Li XY, He JH (2012) Acs Appl Mater Inter 4:2204–2211CrossRefGoogle Scholar
  26. 26.
    Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T (2010) Chem Mater 22:12–14CrossRefGoogle Scholar
  27. 27.
    Tagaya M, Hanagata N, Kobayashi T (2012) Acs Appl Mater Int 4:6169–6175CrossRefGoogle Scholar
  28. 28.
    Krzyzak M, Frischat GH, Hellmold P (2007) J Sol–Gel Sci Technol 41:99–102CrossRefGoogle Scholar
  29. 29.
    Zha J, Lu X, Xin Z (2015) J Phys Chem C 119:420–425CrossRefGoogle Scholar
  30. 30.
    Boudot M, Gaud V, Louarn M, Selmane M, Grosso D (2014) Chem Mater 26:1822–1833CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations