Journal of Sol-Gel Science and Technology

, Volume 74, Issue 3, pp 603–612 | Cite as

Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications

  • Morteza Hajizadeh-Oghaz
  • Reza Shoja Razavi
  • Ali Ghasemi
Original Paper


Nanocrystalline ceria–yttria co stabilized zirconia (CYSZ) powder was successfully synthesized by the Pechini complex route. The obtained powder was tetragonal ZrO2. Fourier transform infrared spectroscopy was employed to evaluate the bonding characteristics of the obtained gel. Thermo gravimetric analysis together with differential scanning calorimetry was used to investigate the variations of dried gel properties with temperature and to identify the appropriate heating process. The effect of heat treatment procedure on the purity and crystallographic structure of the final product was studied by the use of X-ray diffraction. Furthermore, Raman spectra were recorded at room temperature to find out about possible Raman modes and to understand the structure of CYSZ nanoparticles. The changes in morphology and the size distribution were studied by field emission scanning electron microscopy and transmission electron microscopy. The CYSZ powder contained primary particles of 25 nm size with a uniform distribution. Thermal conductivity of nanostructured CYSZ measured by laser flash technique, found to be lower than conventional counterpart.


Nanocrystalline CYSZ Pechini method Characterization Sol–gel 



We gratefully acknowledge support of this research by the Malek Ashtar University of Technology (MUT).


  1. 1.
    Cao X, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10CrossRefGoogle Scholar
  2. 2.
    Reardon J, Dorfman M (1987) Advanced thermal barrier coating systems. J Mater Energy Syst 8(4):414–419CrossRefGoogle Scholar
  3. 3.
    Di Girolamo G, Blasi C, Schioppa M, Tapfer L (2010) Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings. Ceram Int 36(3):961–968CrossRefGoogle Scholar
  4. 4.
    Pawlowski L (2008) The science and engineering of thermal spray coatings. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487CrossRefGoogle Scholar
  6. 6.
    Viazzi C, Bonino J-P, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J Alloy Compd 452(2):377–383CrossRefGoogle Scholar
  7. 7.
    Harmsworth P, Stevens R (1991) Microstructure and phase composition of ZrO2–CeO2 thermal barrier coatings. J Mater Sci 26(15):3991–3995CrossRefGoogle Scholar
  8. 8.
    Taylor R, Brandon J, Morrell P (1992) Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings. Surf Coat Technol 50(2):141–149CrossRefGoogle Scholar
  9. 9.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt. Ceram Int 38(8):6613–6620CrossRefGoogle Scholar
  10. 10.
    Liu LY, Shankar R, Howard P (2010) High sintering resistance of a novel thermal barrier coating. Surf Coat Technol 204(20):3154–3160CrossRefGoogle Scholar
  11. 11.
    Jamali H, Mozafarinia R, Shoja Razavi R, Ahmadi-Pidani R, Reza Loghman-Estarki M (2012) Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci 8(3):402–409CrossRefGoogle Scholar
  12. 12.
    Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R (2014) Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc 34(2):485–492CrossRefGoogle Scholar
  13. 13.
    Jamali H, Mozafarinia R, Shoja Razavi R, Ahmadi-Pidani R (2012) Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 38(8):6705–6712CrossRefGoogle Scholar
  14. 14.
    Racek O, Berndt CC, Guru D, Heberlein J (2006) Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surf Coat Technol 201(1):338–346CrossRefGoogle Scholar
  15. 15.
    Gong W, Sha C, Sun D, Wang W (2006) Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings. Surf Coat Technol 201(6):3109–3115CrossRefGoogle Scholar
  16. 16.
    Muccillo E, Avila D (1999) Synthesis and characterization of submicron zirconia–12 mol% ceria ceramics. Ceram Int 25(4):345–351CrossRefGoogle Scholar
  17. 17.
    Potdar H, Deshpande S, Deshpande A, Gokhale S, Date S, Khollam Y, Patil A (2002) Preparation of ceria–zirconia (Ce0.75Zr0.25O2) powders by microwave–hydrothermal (MH) route. Mater Chem Phys 74(3):306–312CrossRefGoogle Scholar
  18. 18.
    Weng X, Perston B, Wang XZ, Abrahams I, Lin T, Yang S, Evans JR, Morgan DJ, Carley AF, Bowker M (2009) Synthesis and characterization of doped nano-sized ceria–zirconia solid solutions. Appl Catal B 90(3):405–415CrossRefGoogle Scholar
  19. 19.
    Sharma S, Gokhale N, Dayal R, Lal R (2002) Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique. Bull Mater Sci 25(1):15–20CrossRefGoogle Scholar
  20. 20.
    Settu T, Gobinathan R (1996) Synthesis and characterization of Y2O3–ZrO2 and Y2O3–CeO2–ZrO2 precursor powders. J Eur Ceram Soc 16(12):1309–1318CrossRefGoogle Scholar
  21. 21.
    Suresh Kumar K, Mathews T (2005) Sol–gel synthesis and microwave assisted sintering of zirconia–ceria solid solution. J Alloy Compd 391(1):177–180CrossRefGoogle Scholar
  22. 22.
    Quinelato A, Longo E, Leite E, Bernardi M, Varela J (2001) Synthesis and sintering of ZrO2–CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci 36(15):3825–3830CrossRefGoogle Scholar
  23. 23.
    Tu H, Liu X, Yu Q (2011) Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells. J Power Sources 196(6):3109–3113CrossRefGoogle Scholar
  24. 24.
    Sakka S (2005) Handbook of sol–gel science and technology. 1. Sol–gel processing. Springer, BerlinGoogle Scholar
  25. 25.
    Langford JT, Wilson A (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113CrossRefGoogle Scholar
  26. 26.
    Naghibi S, Faghihi Sani MA, Madaah Hosseini HR (2014) Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique. Ceram Int 40(3):4193–4201CrossRefGoogle Scholar
  27. 27.
    Vivekanandhan S, Venkateswarlu M, Satyanarayana N (2005) Effect of different ethylene glycol precursors on the Pechini process for the synthesis of nano-crystalline LiNi0.5Co0.5VO4 powders. Mater Chem Phys 91(1):54–59CrossRefGoogle Scholar
  28. 28.
    Ejehi F, Marashi S, Ghaani M, Haghshenas D (2012) The synthesis of NaSICON-type ZrNb (PO4)3 structure by the use of Pechini method. Ceram Int 38(8):6857–6863CrossRefGoogle Scholar
  29. 29.
    Wang S, An C, Zhang Y, Zhang Z, Qian Y (2006) Ethanothermal reduction to MoO2 microspheres via modified Pechini method. J Cryst Growth 293(1):209–215CrossRefGoogle Scholar
  30. 30.
    Tsay J-D, Fang T-T, Gubiotti T, Ying J (1998) Evolution of the formation of barium titanate in the citrate process: the effect of the pH and the molar ratio of barium ion and citric acid. J Mater Sci 33(14):3721–3727CrossRefGoogle Scholar
  31. 31.
    Kakihana M, Arima M, Nakamura Y, Yashima M, Yoshimura M (1999) Spectroscopic characterization of precursors used in the Pechini-type polymerizable complex processing of barium titanate. Chem Mater 11(2):438–450CrossRefGoogle Scholar
  32. 32.
    Abreu A Jr, Zanetti S, Oliveira M, Thim G (2005) Effect of urea on lead zirconate titanate—Pb (Zr0.52Ti0.48) O3—nanopowders synthesized by the Pechini method. J Eur Ceram Soc 25(5):743–748CrossRefGoogle Scholar
  33. 33.
    Hajizadeh-Oghaz M, Razavi RS, Loghman-Estarki MR (2014) Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 70(1):6–13CrossRefGoogle Scholar
  34. 34.
    Hajizadeh-Oghaz M, Razavi RS, Estarki ML (2014) Large-scale synthesis of YSZ nanopowder by Pechini method. Bull Mater Sci 37(5):969–973CrossRefGoogle Scholar
  35. 35.
    Oghaz MH, Razavi RS, Loghman-Estark MR, Ghasemi R (2013) Optimization of morphology and particle size of modified sol–gel synthesized YSZ nanopowder using Taguchi method. J Nano Res 21:65–70CrossRefGoogle Scholar
  36. 36.
    A Handbook (1979) Metals handbook, powder metallurgy, vol 9Google Scholar
  37. 37.
    Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74CrossRefGoogle Scholar
  38. 38.
    Ahmaniemi S, Vuoristo P, Mäntylä T, Cernuschi F, Lorenzoni L (2004) Modified thick thermal barrier coatings: thermophysical characterization. J Eur Ceram Soc 24(9):2669–2679CrossRefGoogle Scholar
  39. 39.
    Soyez G, Eastman JA, Thompson LJ, Bai G-R, Baldo PM, McCormick AW, DiMelfi RJ, Elmustafa AA, Tambwe MF, Stone DS (2000) Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl Phys Lett 77(8):1155–1157CrossRefGoogle Scholar
  40. 40.
    Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 73:227–241Google Scholar
  41. 41.
    Rauf A, Yu Q, Jin L, Zhou C (2012) Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scripta Mater 66(2):109–112CrossRefGoogle Scholar
  42. 42.
    Guo X (1997) Space-charge conduction in yttria and alumina codoped-zirconia 1. Solid State Ionics 96(3):247–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Morteza Hajizadeh-Oghaz
    • 1
  • Reza Shoja Razavi
    • 1
  • Ali Ghasemi
    • 1
  1. 1.Department of Materials Science and EngineeringMaleke Ashtar University of TechnologyShahinshahrIran

Personalised recommendations