Skip to main content
Log in

Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline ceria–yttria co stabilized zirconia (CYSZ) powder was successfully synthesized by the Pechini complex route. The obtained powder was tetragonal ZrO2. Fourier transform infrared spectroscopy was employed to evaluate the bonding characteristics of the obtained gel. Thermo gravimetric analysis together with differential scanning calorimetry was used to investigate the variations of dried gel properties with temperature and to identify the appropriate heating process. The effect of heat treatment procedure on the purity and crystallographic structure of the final product was studied by the use of X-ray diffraction. Furthermore, Raman spectra were recorded at room temperature to find out about possible Raman modes and to understand the structure of CYSZ nanoparticles. The changes in morphology and the size distribution were studied by field emission scanning electron microscopy and transmission electron microscopy. The CYSZ powder contained primary particles of 25 nm size with a uniform distribution. Thermal conductivity of nanostructured CYSZ measured by laser flash technique, found to be lower than conventional counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cao X, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10

    Article  Google Scholar 

  2. Reardon J, Dorfman M (1987) Advanced thermal barrier coating systems. J Mater Energy Syst 8(4):414–419

    Article  Google Scholar 

  3. Di Girolamo G, Blasi C, Schioppa M, Tapfer L (2010) Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings. Ceram Int 36(3):961–968

    Article  Google Scholar 

  4. Pawlowski L (2008) The science and engineering of thermal spray coatings. Wiley, Hoboken

    Book  Google Scholar 

  5. Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487

    Article  Google Scholar 

  6. Viazzi C, Bonino J-P, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J Alloy Compd 452(2):377–383

    Article  Google Scholar 

  7. Harmsworth P, Stevens R (1991) Microstructure and phase composition of ZrO2–CeO2 thermal barrier coatings. J Mater Sci 26(15):3991–3995

    Article  Google Scholar 

  8. Taylor R, Brandon J, Morrell P (1992) Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings. Surf Coat Technol 50(2):141–149

    Article  Google Scholar 

  9. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt. Ceram Int 38(8):6613–6620

    Article  Google Scholar 

  10. Liu LY, Shankar R, Howard P (2010) High sintering resistance of a novel thermal barrier coating. Surf Coat Technol 204(20):3154–3160

    Article  Google Scholar 

  11. Jamali H, Mozafarinia R, Shoja Razavi R, Ahmadi-Pidani R, Reza Loghman-Estarki M (2012) Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci 8(3):402–409

    Article  Google Scholar 

  12. Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R (2014) Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc 34(2):485–492

    Article  Google Scholar 

  13. Jamali H, Mozafarinia R, Shoja Razavi R, Ahmadi-Pidani R (2012) Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 38(8):6705–6712

    Article  Google Scholar 

  14. Racek O, Berndt CC, Guru D, Heberlein J (2006) Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surf Coat Technol 201(1):338–346

    Article  Google Scholar 

  15. Gong W, Sha C, Sun D, Wang W (2006) Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings. Surf Coat Technol 201(6):3109–3115

    Article  Google Scholar 

  16. Muccillo E, Avila D (1999) Synthesis and characterization of submicron zirconia–12 mol% ceria ceramics. Ceram Int 25(4):345–351

    Article  Google Scholar 

  17. Potdar H, Deshpande S, Deshpande A, Gokhale S, Date S, Khollam Y, Patil A (2002) Preparation of ceria–zirconia (Ce0.75Zr0.25O2) powders by microwave–hydrothermal (MH) route. Mater Chem Phys 74(3):306–312

    Article  Google Scholar 

  18. Weng X, Perston B, Wang XZ, Abrahams I, Lin T, Yang S, Evans JR, Morgan DJ, Carley AF, Bowker M (2009) Synthesis and characterization of doped nano-sized ceria–zirconia solid solutions. Appl Catal B 90(3):405–415

    Article  Google Scholar 

  19. Sharma S, Gokhale N, Dayal R, Lal R (2002) Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique. Bull Mater Sci 25(1):15–20

    Article  Google Scholar 

  20. Settu T, Gobinathan R (1996) Synthesis and characterization of Y2O3–ZrO2 and Y2O3–CeO2–ZrO2 precursor powders. J Eur Ceram Soc 16(12):1309–1318

    Article  Google Scholar 

  21. Suresh Kumar K, Mathews T (2005) Sol–gel synthesis and microwave assisted sintering of zirconia–ceria solid solution. J Alloy Compd 391(1):177–180

    Article  Google Scholar 

  22. Quinelato A, Longo E, Leite E, Bernardi M, Varela J (2001) Synthesis and sintering of ZrO2–CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci 36(15):3825–3830

    Article  Google Scholar 

  23. Tu H, Liu X, Yu Q (2011) Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells. J Power Sources 196(6):3109–3113

    Article  Google Scholar 

  24. Sakka S (2005) Handbook of sol–gel science and technology. 1. Sol–gel processing. Springer, Berlin

    Google Scholar 

  25. Langford JT, Wilson A (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113

    Article  Google Scholar 

  26. Naghibi S, Faghihi Sani MA, Madaah Hosseini HR (2014) Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique. Ceram Int 40(3):4193–4201

    Article  Google Scholar 

  27. Vivekanandhan S, Venkateswarlu M, Satyanarayana N (2005) Effect of different ethylene glycol precursors on the Pechini process for the synthesis of nano-crystalline LiNi0.5Co0.5VO4 powders. Mater Chem Phys 91(1):54–59

    Article  Google Scholar 

  28. Ejehi F, Marashi S, Ghaani M, Haghshenas D (2012) The synthesis of NaSICON-type ZrNb (PO4)3 structure by the use of Pechini method. Ceram Int 38(8):6857–6863

    Article  Google Scholar 

  29. Wang S, An C, Zhang Y, Zhang Z, Qian Y (2006) Ethanothermal reduction to MoO2 microspheres via modified Pechini method. J Cryst Growth 293(1):209–215

    Article  Google Scholar 

  30. Tsay J-D, Fang T-T, Gubiotti T, Ying J (1998) Evolution of the formation of barium titanate in the citrate process: the effect of the pH and the molar ratio of barium ion and citric acid. J Mater Sci 33(14):3721–3727

    Article  Google Scholar 

  31. Kakihana M, Arima M, Nakamura Y, Yashima M, Yoshimura M (1999) Spectroscopic characterization of precursors used in the Pechini-type polymerizable complex processing of barium titanate. Chem Mater 11(2):438–450

    Article  Google Scholar 

  32. Abreu A Jr, Zanetti S, Oliveira M, Thim G (2005) Effect of urea on lead zirconate titanate—Pb (Zr0.52Ti0.48) O3—nanopowders synthesized by the Pechini method. J Eur Ceram Soc 25(5):743–748

    Article  Google Scholar 

  33. Hajizadeh-Oghaz M, Razavi RS, Loghman-Estarki MR (2014) Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 70(1):6–13

    Article  Google Scholar 

  34. Hajizadeh-Oghaz M, Razavi RS, Estarki ML (2014) Large-scale synthesis of YSZ nanopowder by Pechini method. Bull Mater Sci 37(5):969–973

    Article  Google Scholar 

  35. Oghaz MH, Razavi RS, Loghman-Estark MR, Ghasemi R (2013) Optimization of morphology and particle size of modified sol–gel synthesized YSZ nanopowder using Taguchi method. J Nano Res 21:65–70

    Article  Google Scholar 

  36. A Handbook (1979) Metals handbook, powder metallurgy, vol 9

  37. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74

    Article  Google Scholar 

  38. Ahmaniemi S, Vuoristo P, Mäntylä T, Cernuschi F, Lorenzoni L (2004) Modified thick thermal barrier coatings: thermophysical characterization. J Eur Ceram Soc 24(9):2669–2679

    Article  Google Scholar 

  39. Soyez G, Eastman JA, Thompson LJ, Bai G-R, Baldo PM, McCormick AW, DiMelfi RJ, Elmustafa AA, Tambwe MF, Stone DS (2000) Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl Phys Lett 77(8):1155–1157

    Article  Google Scholar 

  40. Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 73:227–241

  41. Rauf A, Yu Q, Jin L, Zhou C (2012) Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scripta Mater 66(2):109–112

    Article  Google Scholar 

  42. Guo X (1997) Space-charge conduction in yttria and alumina codoped-zirconia 1. Solid State Ionics 96(3):247–254

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of this research by the Malek Ashtar University of Technology (MUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hajizadeh-Oghaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh-Oghaz, M., Shoja Razavi, R. & Ghasemi, A. Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 74, 603–612 (2015). https://doi.org/10.1007/s10971-015-3639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3639-y

Keywords

Navigation