Journal of Sol-Gel Science and Technology

, Volume 73, Issue 2, pp 511–517 | Cite as

Nd2O3: novel synthesis and characterization

Brief Communication


The present work was focused on producing sustainable Nd2O3 nanoparticles for inhibiting human breast cancer cells. Novel synthesis route was described. Raman, PL, XRD, FTIR, XPS and TEM characterization was explored. Observed Raman Fg and Ag + Eg combination modes confirmed Nd2O3. PL emission bands around ∼352–392 nm (UV), ∼429–472 nm (blue), ∼580 nm (green) and ∼650 nm (red) further confirmed Nd2O3. Highest incubation period clearly exhibits (100) oriented strong XRD characteristic Nd2O3 peak. 413 and 630 cm−1 peaks represent IR characteristic metal–oxygen (Nd–O) vibrations. Nd3d peak shifted to higher binding energy upon increasing incubation period substantiate the presence of bigger particles due to rich Nd structure. 7 days incubation revealed agglomerated Nd2O3 particles (200 nm). 1 day incubated 500 (µg/ml) Nd2O3 dosage could be used as an effective biocompatibility material.


Novel synthesis Nd2O3 Raman PL XPS 



This work was supported by a grant from Basic Atomic Research Institute Program through the National Research Foundation of Korea (2014) and by NRF-2014M1A7A1A01030128, and NRF-2014M3C1A8048818.


  1. 1.
    Que W, Kam CH, Zhou Y, Lam YL, Chan YC (2001) J Appl Phys 90:4865–4867CrossRefGoogle Scholar
  2. 2.
    Singh J, Soni NC, Srivastava SL (2003) Bull Mater Sci 26:397–399CrossRefGoogle Scholar
  3. 3.
    Delmore F, Harnois C, Monot-Laffez I, Desgardin G (2002) Phys C 372:1127–1130Google Scholar
  4. 4.
    Tosun G, Rase HF (1972) Ind Eng Chem Prod Res Dev 11:249–260CrossRefGoogle Scholar
  5. 5.
    Chevalier S, Bonnet G, Larpin JP (2000) Appl Surf Sci 167:125–133CrossRefGoogle Scholar
  6. 6.
    Liu T, Zhang Y, Shao H, Li X (2003) Langmuir 19:7569–7572CrossRefGoogle Scholar
  7. 7.
    Kepinski L, Zawadzki M, Mista W (2004) Solid State Sci 6:1327–1336CrossRefGoogle Scholar
  8. 8.
    Zawadzki M, Kepinski L (2004) J Alloys Compd 380:255–259CrossRefGoogle Scholar
  9. 9.
    Yang W, Qi Y, Ma Y, Li X, Guo X, Gao J, Chen M (2004) Mater Chem Phys 84:52–57CrossRefGoogle Scholar
  10. 10.
    Chen Y, Yang L, Feng C, Wen LP (2005) Biochem ##Bio-phys Res Commun 337:52–60CrossRefGoogle Scholar
  11. 11.
    Panda AB, Glaspell G, El-Shall MS (2007) J Phys Chem C 111:1861–1864CrossRefGoogle Scholar
  12. 12.
    Pan TM, Lin CW, Lin JC, Wu MH (2009) Electrochem ##Solid State Lett 12:J96–J99CrossRefGoogle Scholar
  13. 13.
    Dorris A, Sicard C, Chen MC, McDonald AB, Barrett CJ (2011) ACS Appl Mater Interfaces 3:3357–3365CrossRefGoogle Scholar
  14. 14.
    Umesh B, Eraiah B, Nagabhushana H, Nagab-hushana BM, Nagaraje G, Shivakumara C, Chak-radhar RPS (2011) J Alloys Compd 509:1146–1151CrossRefGoogle Scholar
  15. 15.
    Umesh B, Eraiah B, Nagabhushana H, Sharma SC, Sunitha DV, Nagabhushana BM, Shivakumara C, Rao JL, Chakradhar RPS (2012) Spectrochim Acta, Part A 93:228–234CrossRefGoogle Scholar
  16. 16.
    Liqin Q, Kaituo W, Xuehang W, Wenwei W, Sen L, Gengming L (2014) Ceram Int 40:3003–3009CrossRefGoogle Scholar
  17. 17.
    Michel CR, Martinez-Preciado AH, Contreras NLL (2013) Sens Actuators, B 184:8–14CrossRefGoogle Scholar
  18. 18.
    Fan X, Liu H, Zhang X (2014) Appl Phys A114:545–550CrossRefGoogle Scholar
  19. 19.
    Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Mater Sci Eng, C 41:17–27CrossRefGoogle Scholar
  20. 20.
    Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Mat Lett 128:170–174CrossRefGoogle Scholar
  21. 21.
    Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Spectrochim Acta, Part A 137:250–258CrossRefGoogle Scholar
  22. 22.
    Yuvakkumar R, Nathanael AJ, Hong SI (2014) RSC Adv 4:44495–44499CrossRefGoogle Scholar
  23. 23.
    Yuvakkumar R, Suresh J, Hong SI (2014) Adv Mater Res 952:137–140CrossRefGoogle Scholar
  24. 24.
    Yuvakkumar R, Hong SI (2014) Adv Mater Res 1051:39–42CrossRefGoogle Scholar
  25. 25.
    Elfakir A, Tlemçani TS, Benamar EB, Belayachi A, Gutierrez-Berasategui E, Schmerber G, Balestrieri M, Colis S, Slaoui A, Dinia A, Abd-Lefdil M (2014) J Sol-Gel Sci Technol. doi: 10.1007/s10971-014-3518-y Google Scholar
  26. 26.
    Anandan S, Muthukumaran S, Ashokkumar M (2014) J Sol-Gel Sci Technol 70:133–141CrossRefGoogle Scholar
  27. 27.
    Petrov D, Angelov B (2010) J Sol-Gel Sci Technol 53:227–231CrossRefGoogle Scholar
  28. 28.
    Aghamkar P, Duhan S, Singh M, Kishore N, Sen PK (2008) J Sol-Gel Sci Technol 43:283–290Google Scholar
  29. 29.
    Baiju KV, Periyat P, Wunderlich W, Pillai PK, Mukundan P, Warrier KGK (2007) J Sol-Gel Sci Technol 43:283–290CrossRefGoogle Scholar
  30. 30.
    Saha S, Chanda S, Dutta A, Sinha TP (2014) J Sol-Gel Sci Technol 69:553–563CrossRefGoogle Scholar
  31. 31.
    Chen G, Wang Y, Zhang F, Liang H, Wang F, Li L (2012) J Sol-Gel Sci Technol 64:564–570CrossRefGoogle Scholar
  32. 32.
    Nakajima T, Nishio K, Ishigaki T, Tsuchiya T (2005) J Sol-Gel Sci Technol 33:107–111CrossRefGoogle Scholar
  33. 33.
    Ge Xing-Xin, Sun Yan-Hui, Liu Cong, Qi Wu-Kai (2009) J Sol-Gel Sci Technol 52:179–187CrossRefGoogle Scholar
  34. 34.
    Barnaby SN, Yu SM, Fath KR, Tsiola A, Khalpari O, Banerjee IA (2011) Nanotechnol 22:225605CrossRefGoogle Scholar
  35. 35.
    Bala I, Bhardwaj V, Hariharan S, Sitterberg J, Bakowsky U, Kumar MNVR (2005) Nanotechnology 16:2819CrossRefGoogle Scholar
  36. 36.
    Yuvakkumar R, Nathanael AJ, Rajendran V, Hong SI (2014) J Sol-Gel Sci Technol 72:198–205CrossRefGoogle Scholar
  37. 37.
    Yuvakkumar R, Elango V, Rajendran V, Kannan N, Prabu P (2011) Synth React Inorg Met-Org Chem 41:309–314CrossRefGoogle Scholar
  38. 38.
    Przewloka SR, Shearer BJ (2002) Holzforschung 56:13–19Google Scholar
  39. 39.
    Long NV, Thi CM, Yong Y, Cao Y, Wu H, Nogami M (2014) Recent Pat Nanotechnol 8:52–61CrossRefGoogle Scholar
  40. 40.
    Anh Tran T, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) ACS Appl Mater Interfaces 6:2980–2986CrossRefGoogle Scholar
  41. 41.
    Manikandan M, Gopal J, Hasan N, Wu HF (2014) Talanta 130:78–89CrossRefGoogle Scholar
  42. 42.
    Bakht MK, Sadeghic M, Ahmadi SJ, Sadjadi SS, Tenreiro C (2013) Nucl Med Communi 34:5–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nanomaterials EngineeringChungnam National UniversityDaejeonSouth Korea
  2. 2.Division of Physical MetrologyKorea Research Institute of Standards and ScienceDaejeonSouth Korea

Personalised recommendations