Advertisement

Journal of Sol-Gel Science and Technology

, Volume 74, Issue 2, pp 472–481 | Cite as

Resistive humidity sensors based on proton-conducting organic–inorganic silicophosphates doped by polyionenes

  • Кostyantyn M. Sukhyy
  • Yuri P. Gomza
  • Elena A. Belyanovskaya
  • Valeriy V. Klepko
  • Olga A. Shilova
  • Mikhaylo P. Sukhyy
Original Paper

Abstract

Silicophosphate organic–inorganic nanocomposites synthesized by sol–gel method were studied. Fractal characteristics were investigated by small-angle X-ray scattering and transmission electronic microscopy. A correlation between proton conductivity, composition and structure of system, as well as synthesis conditions is revealed. The dependence of nanocomposite conductivity on alternating current and relative media humidity from 23.5 to 96.5 % was stated, that is evidence of their availability as active media for humidity sensors.

Graphical Abstract

Keywords

Silicophosphate Nanocomposites Sol–gel synthesis Fractal structure Protonic conductivity 

References

  1. 1.
    Hirata K, Matsuda A, Hirata T et al (2000) J Sol-Gel Sci Tech 17:61CrossRefGoogle Scholar
  2. 2.
    Matsuda A, Nono Y, Tadanaga K, Minami T, Tatsumisago M (2003) Solid State Ionics 253:162–163Google Scholar
  3. 3.
    Oubaha M, Smaili M, Etienne P (2003) J Non-Cryst Solids 318:305–308CrossRefGoogle Scholar
  4. 4.
    Wung CJ, Lee K-S, Prasads PN (1992) Polymer 33:4145–4146Google Scholar
  5. 5.
    Han W-T (1999) J Non-Cryst Solids 259:107–110CrossRefGoogle Scholar
  6. 6.
    Imai Y, Yoshida N, Naka K (1999) Polymer 31:258–260CrossRefGoogle Scholar
  7. 7.
    Deng Z, Wang J, Wu A (1998) J Non-Cryst Solids 225:101–103CrossRefGoogle Scholar
  8. 8.
    Song C, Villemure G (2001) Microporous Mesoporous Mater 44:679–682CrossRefGoogle Scholar
  9. 9.
    Rabinovich L, Glezer V, Wu Z (2001) J Electroanal Chem 504:146–149CrossRefGoogle Scholar
  10. 10.
    Santos LRB, Belin S, Brios V (2003) J Sol-Gel Sci Tech 26:171–173CrossRefGoogle Scholar
  11. 11.
    West GD, Diamond GG, Holland D (2002) J Membr Sci 5175:1–7Google Scholar
  12. 12.
    Nam CW, Woo SI (1994) Thin Solid Films 237:314–315CrossRefGoogle Scholar
  13. 13.
    Valverde G, Macedo JG, Cruz D (2003) J Sol-Gel Sci Tech 26:605–608CrossRefGoogle Scholar
  14. 14.
    Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80:1040–1042CrossRefGoogle Scholar
  15. 15.
    Armelao L, Barreca D, Moraru B (2003) J Non-Cryst Solids 316:364–367CrossRefGoogle Scholar
  16. 16.
    Sukhyy KM, Belyanovskaya EA (2014) Kozlov YaN, Kolomiyets EV, Sukhyy MP. Appl Therm Eng 64:408–412CrossRefGoogle Scholar
  17. 17.
    Guimaraes AP, Viana APP, Lago RM (2002) J Non-Cryst Solid 304:70–73CrossRefGoogle Scholar
  18. 18.
    Haas-Santo K, Fichtner M, Schubert K (2001) Appl Catalysis A: General 220:79–82Google Scholar
  19. 19.
    Wu Z, Lee K, Lin Y (2003) J Non-Cryst Solids 320:168–170CrossRefGoogle Scholar
  20. 20.
    Lu Y, Cao G, Kale RP (1999) Chem Mater 11:1223–1226CrossRefGoogle Scholar
  21. 21.
    Biazzotto JC, Vidoto EA, Nascimento OR (2002) J Non-Cryst Solids 304:101–104CrossRefGoogle Scholar
  22. 22.
    Osborne H, Blohowiak KY, Taylor SR (2001) Progr Org Coatings 41:217–220CrossRefGoogle Scholar
  23. 23.
    Lu X, Manners I, Winnik MA (2001) Macromolecules 34:1917–1921CrossRefGoogle Scholar
  24. 24.
    Yang P, Lu M, Song C (2002) J Non-Cryst Solids 304:70–75CrossRefGoogle Scholar
  25. 25.
    Deshpande AV, Kumar U (2002) J Non-Cryst Solids 306:149–152CrossRefGoogle Scholar
  26. 26.
    Czuryszkiewicz A, Ahvenlammi J, Kortesuo P (2002) J Non-Cryst Solids 311:99–103CrossRefGoogle Scholar
  27. 27.
    Pandey PC, Upadhyay S, Tiwari I (2001) Sens Actuators 72:224–226CrossRefGoogle Scholar
  28. 28.
    Mohanty AK, Banerjee S, Komber H, Voit B (2014) Solid State Ionics 254:82–91CrossRefGoogle Scholar
  29. 29.
    Echeverri M, Hamad C, Kyu T (2014) Solid State Ionics 254:92–100CrossRefGoogle Scholar
  30. 30.
    Gomza YuP, Klepko VV, Nesin SD, Sukhyy KM, Burmistr EM (2006) In: El’skaya AV, Pokhodenko VD (ed) Investigation on sensor systems and technologies, Kyiv, UkraineGoogle Scholar
  31. 31.
    Vonk CG (1977) Programm for the processing of small-angle X-ray scattering data FFSAXS. Version 3,- DSM, Geleen, NetherlandsGoogle Scholar
  32. 32.
    Beaucage G (1995) J Appl Cryst 28:717–728CrossRefGoogle Scholar
  33. 33.
    Beaucage G (1996) J Appl Cryst 29:134–146CrossRefGoogle Scholar
  34. 34.
    Hyeon-Lee J, Beaucage G, Pratsinis SE (1997) Chem Mater 9:2400–2403CrossRefGoogle Scholar
  35. 35.
    Hyeon-Lee J, Beaucage G, Pratsinis SE, Vemury S (1998) Langmuir 14:5751–5756CrossRefGoogle Scholar
  36. 36.
    Vonk CG (1976) J Appl Cryst 9:433CrossRefGoogle Scholar
  37. 37.
    Sakai Y, Sadaoka Y, Matsuguchi M (1989) J Electrochem Soc 136:171CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Кostyantyn M. Sukhyy
    • 1
  • Yuri P. Gomza
    • 2
  • Elena A. Belyanovskaya
    • 1
  • Valeriy V. Klepko
    • 2
  • Olga A. Shilova
    • 3
  • Mikhaylo P. Sukhyy
    • 1
  1. 1.State Higher Education InstitutionUkrainian State University of Chemical EngineeringDnipropetrovs’kUkraine
  2. 2.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKievUkraine
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations