Journal of Sol-Gel Science and Technology

, Volume 74, Issue 2, pp 425–431 | Cite as

Nanoparticles of lead zirconate titanate (PZT) used as ferroelectric ceramics produced by sol–gel acetic-acid route

  • M. G. Garnica-Romo
  • A. Páez-Sánchez
  • L. García-González
  • I. Domínguez-López
  • L. L. Díaz-Flores
  • M. Villicaña-Mendez
Original Paper


The aim of this work was to synthesize lead zirconate titanate (PZT) nanopowder using a modified sol–gel processing method. PZT obtained by a sol–gel route using acetic acid had compositions in the morphotropic phase boundary (Ti/Zr, 53/47 and 45/55). All samples were annealed in air at 800 °C and sintered at temperature above 1,000 °C. Structure and morphology of the samples were determined and characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, dilation, densification and pyroelectric response. Results of X-ray diffraction on samples PZT showed a phase, but not a pyrochlore one, which we determined to be the best pyroelectric response. The samples presented high densification and had appropriate characteristics when used as pyroelectric sensors. Ceramics with a composition of 53/47 had the best pyroelectric response. An average particle size of 20 nm was measured using TEM.


PZT Acetic acid Sol–gel Nanoparticles Characterization 



We thank PROMEP for their support grant to Red de Cuerpos Académicos “Materiales Nanoestructurados [Reference PROMEP/103.5/12/2181].


  1. 1.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New YorkGoogle Scholar
  2. 2.
    Faheem Y, Shoaib M (2006) Sol–gel processing and characterization of phase-pure lead zirconate titanate nano-powders. J Am Ceram Soc 89:2034–2037CrossRefGoogle Scholar
  3. 3.
    Zhang S, Wang X, Li L (2012) Processing and characterization of lead zirconate titanate nanopowders by a simple water-based sol–gel method. J Am Ceram Soc 95:3472–3477CrossRefGoogle Scholar
  4. 4.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl Phys Lett 74:2059–2061CrossRefGoogle Scholar
  5. 5.
    Deluca Sakashita, Galassi C, Pezzotti G (2006) Investigation of local orientation and stress analysis of PZT-based materials using micro-probe polarized Raman spectroscopy. J Eur Ceram Soc 26:2337–2344CrossRefGoogle Scholar
  6. 6.
    Ma JH, Meng XJ, Sun JL, Lin T, Shi FW, Chu JH (2005) Effect of annealing ambient on structure and ferroelectric properties of Pb(Zr0.4Ti0.6)O3 thin films on LaNiO3 coated Si substrates. Mat Res Bull 40:221–228CrossRefGoogle Scholar
  7. 7.
    Seo YJ, Park JS, Lee WS (2006) Chemical mechanical polishing of PZT thin films for FRAM applications. Microelectron Eng 83:2238–2242CrossRefGoogle Scholar
  8. 8.
    Khorsand Zak A, Abd Majid WH (2011) Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, infrared region. Ceram Int 37:753–758CrossRefGoogle Scholar
  9. 9.
    Uma S, Philip J (2013) Induction of electro-activity in polyvinyl alcohol with addition of nanocrystalline PZT ceramic. Indian J Pure Appl Phys 51:717–723Google Scholar
  10. 10.
    Goel M (2004) Recent developments in electroceramics: MEMS applications for energy and environment. Ceram Int 30:1147–1154CrossRefGoogle Scholar
  11. 11.
    Frey MH, Payne DA (1996) Grain-size effect on structure and phase transformations for barium titanate. Phys Rev B 54:3158–3168CrossRefGoogle Scholar
  12. 12.
    Fernández-Osorio AL, Vázquez-Olmos A, Mata-Zamora E, Saniger JM (2007) Preparation of free-standing Pb(Zr0.52Ti0.48)O3 nanoparticles by sol–gel method. J Sol-Gel Sci Technol 42:145–149CrossRefGoogle Scholar
  13. 13.
    Deng Y, Liu L, Cheng Y, Nan CW, Zhao SJ (2003) Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mater Lett 57:1675–1678CrossRefGoogle Scholar
  14. 14.
    Cernea M, Montanari G, Galassi C, Costa AL (2006) Synthesis of La and Nb doped PZT powder by the gel-combustion method. Nanotechnology 7:1731–1735CrossRefGoogle Scholar
  15. 15.
    Banerjee A, Bose S (2004) Low-temperature synthesis and densification. Chem Mater 16:5610–5615CrossRefGoogle Scholar
  16. 16.
    Gajbhiye NS, Pandey PK, Smitha P (2007) Low-temperature synthesis of nanostructured PZT for dielectric studies. Synth React Inorg Met-Org Nano-Met Chem 37:431–435CrossRefGoogle Scholar
  17. 17.
    Liu C, Zou B, Rondinine AJ, Zhang ZJ (2001) Sol–gel synthesis of freestanding ferroelectric lead zirconate titanate nanoparticle. J Am Chem Soc 123:4344–4345CrossRefGoogle Scholar
  18. 18.
    Xu ZJ, Chu RQ, Li GR, Shao X, Yin QR (2005) Preparation of PZT powder and ceramics via a hybrid method of sol–gel and ultrasonic atomization. Mater Sci Eng B 117:113–118CrossRefGoogle Scholar
  19. 19.
    Jayasinghe SN, Dorey RA, Edirisinghe MJ, Luklinska ZB (2005) Preparation of lead zirconate titanate nano-powder by electrohydrodynamic atomization. Appl Phys A 80:723–725CrossRefGoogle Scholar
  20. 20.
    Stefanescu M, Stoia M, Stefanescu O (2007) Thermal and FT-IR study of the hybrid ethylene-glycol-silica matrix. J Sol-Gel Technol 41:71–78CrossRefGoogle Scholar
  21. 21.
    Khorsand Zak A, Abd Majid WH (2010) Characterization and X-ray peak broadening analysis PZT nanoparticles prepared by modified sol–gel method. Ceram Int 36:1905–1910CrossRefGoogle Scholar
  22. 22.
    Livage J, Sanchez C, Babonneau F (1998) In: Interrante LV, Hampden-Smith MJ (eds) Chemistry of Advanced Materials. Wiley-VCH, New YorkGoogle Scholar
  23. 23.
    Klabunde KJ, Mohs C (1998) In: Interrante LV, Hampden-Smith MJ (eds) Chemistry of Advanced Materials. Wiley-VCH, New YorkGoogle Scholar
  24. 24.
    Yi G, Wu Z, Sayer M (1988) Preparation of Pb(Zr, Ti)O3 thin films by sol–gel processing. J Appl Phys 64(5):2717–2724CrossRefGoogle Scholar
  25. 25.
    Yang WD (2001) PZT/PLZT ceramics prepared by hydrolysis and condensation of acetate precursors. Ceram Int 27(4):373–384CrossRefGoogle Scholar
  26. 26.
    Tartaj J, Moure C, Duran P (2001) Influence of seeding on the crystallization kinetics of PbTiO3 from gel-derived precursors. Ceram Int 27:741–747CrossRefGoogle Scholar
  27. 27.
    Rivera-Ruedas MG, Flores-Noria JR, García-Rodriguez FJ, Muñoz-Saldaña J, Bucio-Hernandez Y, Garnica-Romo MG et al (2009) PZT ferroelectric ceramics obtained by sol–gel method using 2-metoxyethanol route for pyroelectric sensors. Mater Res Innov 13:375–378CrossRefGoogle Scholar
  28. 28.
    Liu W, Zhu W (2000) Preparation and orientation control of Pb1.1(Zr0.3Ti0.7)O3 thin films by a modified sol–gel process. Mater Lett 46:239–243CrossRefGoogle Scholar
  29. 29.
    Huang CL, Chen BH, Wu L (2004) Application feasibility of Pb(Zr, Ti)O3 ceramics fabricated from sol–gel derived powders using titanium and zirconium alkoxides. Mat Res Bull 39:523–532CrossRefGoogle Scholar
  30. 30.
    Aulika I, Corkovic S, Bencan A, D’Astorg S, Dejneka A, Zhang Q et al (2009) Formation of optical gradient in chemical solution-derived PbZr0.52Ti0.48O3 thin films: spectroscopic ellipsometry investigation. J Electrochem Soc 156:G217–G225CrossRefGoogle Scholar
  31. 31.
    Ogi K, Soyama N, Mieda A (1995) US Patent 5,453,294Google Scholar
  32. 32.
    Assink RA, Schwartz RW (1993) Proton and carbon-13 NMR investigations of lead zirconate titanate [Pb(Zr, Ti)O3] thin-film precursor solutions. Chem Mater 5:511–517CrossRefGoogle Scholar
  33. 33.
    Mandelis A, Zver MM (1985) Theory of photopyroelectric spectroscopy of solids. J Appl Phys 57:4421–4430CrossRefGoogle Scholar
  34. 34.
    Balderas-López JA, Mandelis A, García JA (2001) Measurements of the thermal diffusivity of liquids with a thermal-wave resonator cavity. Anal Sci 17:519–522CrossRefGoogle Scholar
  35. 35.
    Marineili M, Murtas F, Mecozzi MG, Zammit U, Pizzoferrato R, Scudieri F et al (1990) Simultaneous determination of specific heat, thermal conductivity and thermal diffusivity at low temperature via the photopyroelectric technique. Appl Phys A 51A:387–393CrossRefGoogle Scholar
  36. 36.
    Amin A, Newham RE, Cross LE (1986) Effect of elastic boundary conditions on morphotropic Pb(Zr, Ti)O3 piezoelectrics. Phys Rev B 34:1595–1598CrossRefGoogle Scholar
  37. 37.
    Zheng F, Chen J, Li X, Shen M (2006) Morphotropic phase boundary (MPB) effect in Pb(Zr, Ti)O3 rhombohedral/tetragonal multilayered films. Mat Lett 60:2733–2737CrossRefGoogle Scholar
  38. 38.
    Celi LA, Caballero AC, Villegas M, Duran P, Moure C, Fernandez JF (1999) Effect of powder characteristics on densification of PZT ceramics. Bol Soc Esp Ceram 38:493–497CrossRefGoogle Scholar
  39. 39.
    Zhang H, Leppävuori S, Karjalainen P (1995) Raman spectra in laser ablated lead zirconate titanate thin films near the morphotropic phase boundary. J Appl Phys 77:2691–2696CrossRefGoogle Scholar
  40. 40.
    Zhu M-K, Lu P-X, Hou Y-D, Song X-M, Wang H, Yan H (2006) Analysis of phase coexistence in Fe2O3-Doped 0.2PZN–0.8PZT Ferroelectric ceramics by Raman Scattering Spectra. J Am Ceram Soc 89:3739–3744CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. G. Garnica-Romo
    • 1
  • A. Páez-Sánchez
    • 2
  • L. García-González
    • 3
  • I. Domínguez-López
    • 4
  • L. L. Díaz-Flores
    • 5
  • M. Villicaña-Mendez
    • 6
  1. 1.Facultad de Ingeniería CivilUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  3. 3.Centro de Investigación en Micro y NanotecnologíaUniversidad VeracruzanaBoca del RíoMexico
  4. 4.CICATA-IPNQuerétaroMexico
  5. 5.Facultad de IngenieríaUniversidad Juárez Autónoma de TabascoVillahermosa, CentroMexico
  6. 6.Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations